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The current paper contemplates the blowup dynamics in trapped dipolar quantum 
gases. More precisely, employing the profile decomposition of bounded sequences in 
Ḣ1 ∩ Ḣ

1
2 , we firstly construct related variational problems and derive two refined 

Gagliardo–Nirenberg inequalities. Secondly, a compactness lemma is utilized to 
prove that the blowup solutions with bounded Ḣ 1

2 norm and bounded L3 norm 
absolutely concentrate at least a fixed amount.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper, we investigate several concentration characteristics of the blowup solutions for the 
following Gross–Pitaevskii equation:

⎧⎨
⎩

iϕt + 1
2�ϕ + β1|ϕ|2ϕ + β2(K ∗ |ϕ|2)ϕ = 0,

ϕ(0, x) = ϕ0, t ∈ R+, x ∈ R3,

(1)

where ϕ = ϕ(t, x) : R+ × R3 → C. Here i is the imaginary unit, β1, β2 ∈ R are real constants and � is the 
Laplace operator on R3. Meanwhile, we denote ∗ by the convolution with respect to x between the local 
density |ϕ|2 and

K(x) = 1 − 3 cos2 θ
|x|3 ,

where θ = θ(x) is the angle between a fixed dipole axis n ∈ R3 and x ∈ R3, such that |n| = 1, i.e.
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cos θ = x · n
|x| .

The cubic nonlinearity |ϕ|2ϕ profiles the common collision between particles, short-range or isotropic, 
whereas the nonlocal potential K(x) ∗ |ϕ|2 depicts the dipolar interactions. Briefly speaking, Eq. (1) models 
a new sort of quantum gases in which the particles interact are both non-isotropic and long-range, noted as 
dipolar Bose–Einstein condensation.

There are numerous literatures devoted to the study of the properties of Eq. (1). In order to better 
profile the dipolar Bose–Einstein condensation, Yi and You [20] introduced Eq. (1) with a pseudo-potential 
appropriate to depict particles which interact through long-range dipolar forces and short-range repulsive 
forces. In other words, Eq. (1) can be recognized as a nonlinear Schrödinger equation which is rescaled in 
dimensionless form by some mathematical simplification. The existence and uniqueness of ground state as 
well as the blowup theory are accomplished by Carles, Markowich and Sparber in [4] (also see [12,6,3,2]), 
and they established some critical results to refer to, such as the Fourier transform of K(x) in R3 under 
the condition of n = (0, 0, 1). Based on the above results, Antonelli and Sparber [1] have derived some 
necessary conditions and a variational formulation to constitute the existence of standing waves of Eq. (1). 
Moreover, by constructing special cross-constrained invariant sets, Ma and Cao [15] have obtained threshold 
of global existence and finite time blow up of solutions for Eq. (1). These results are also reflected in [14], the 
researchers discussed the exact value in cross-constrained problem and concerned the instability of standing 
waves in the unstable regime.

Further research on the dynamical behaviors of blowup solutions for Eq. (1) is essential. Now we review 
the known results of the classical nonlinear Schrödinger equation

{
iut + �u + |u|p−1u = 0,

u(0, x) = u0, t ∈ R+, x ∈ RN .
(2)

The local well-posedness of Cauchy problem (2) is established by Ginibre and Velo [9] in H1(RN ). The 
existence, uniqueness, stability and instability of standing wave solutions, as well as the existence of finite 
time blowup solutions are investigated (see [17,18,10,19,21]). For p < 1 + 4

N , Eq. (2) is L2-subcritical 
and all solutions are global in H1(RN ). It is worth noting that blowup may occur if p = 1 + 4

N , which 
is considered as L2-critical case and the corresponding unique radial positive solution R satisfying the 
elliptic equation �R − R + |R| 4

N R = 0. Weinstein [19] proved that the sharp sufficient condition for 
the existence of blowup solutions in Cauchy problem (2) is ‖u0‖L2 < ‖R‖L2 . Merle and Tsutsumi [16]
showed a phenomenon of L2-concentration at the origin. Moreover, Hmidi and Keraani [13] proposed a 
modified version of compactness lemma adjusted to the mass concentration. For the L2-supercritical case 
1 + 4

N < p < 4
N−2 + 1, Zhu [22] and Guo [11] proved that the blowup solutions with bounded Ḣsc norm 

and Lpc norm absolutely concentrate at least a fixed amount of Ḣsc norm and Lpc norm, respectively.
In the current paper, we investigate the dynamical behaviors of blowup solutions for Cauchy problem 

(1), which can be recognized as L2-supercritical and Ḣ1-subcritical case. More narrowly, employing the 
profile decomposition of bounded sequences in Ḣ1 ∩ Ḣ

1
2 , we firstly construct related variational structures 

and derive two refined Gagliardo–Nirenberg inequalities (17) and (18). Secondly, a compactness lemma 
is utilized to prove that the blowup solutions with bounded Ḣ

1
2 norm and bounded L3 norm absolutely 

concentrate at least a fixed amount.
Here are some notations: sc = N

2 − 2
p−1 , pc = N(p−1)

2 . H1(R3) = W 1,2(R3) denotes the standard Sobolev 

space. Moreover, we define the pseudo-differential operator (−�)s as ̂(−�)su(ξ) ≡ |ξ|2sû(ξ), which directly 
defines the homogeneous Sobolev space Ḣs(R3) := {u ∈ S ′(R3) :

∫
|ξ|2s|û(ξ)|2dξ < +∞} with its norm 

‖u‖Ḣs = ‖(−�) s
2u‖2, where û represents the Fourier transform of u defined in Section 2, and S ′ denotes 

the dual space of Schwartz space S. For convenience, we denote Lp(R3), Hs(R3), Ḣs(R3) and 
∫
R3 ·dx as Lp, 

Hs, Ḣs and 
∫
·dx, respectively.
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