Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On zero-sector reducing operators $\stackrel{\Leftrightarrow}{\Rightarrow}$

David A. Cardon^a, Tamás Forgács^b, Andrzej Piotrowski^{c,*}, Evan Sorensen^a, Jason C. White^a

^a Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

^b Department of Mathematics, M/S PB108, Fresno, CA 93740-8001, USA

^c Department of Natural Sciences, M/S SOB1, University of Alaska Southeast, Juneau, AK 99801, USA

ARTICLE INFO

Article history: Received 23 March 2018 Available online 23 August 2018 Submitted by V. Andrievskii

Keywords: Zeros Entire functions Jensen disc Zero-sector reducing operator Multiplier sequences

ABSTRACT

We prove a Jensen-disc type theorem for polynomials $p \in \mathbb{R}[z]$ having all their zeros in a sector of the complex plane. This result is then used to prove the existence of a collection of linear operators $T \colon \mathbb{R}[z] \to \mathbb{R}[z]$ which map polynomials with their zeros in a closed convex sector $|\arg z| \leq \theta < \pi/2$ to polynomials with zeros in a smaller sector $|\arg z| \leq \gamma < \theta$. We, therefore, provide the first example of a zero-sector reducing operator.

@ 2018 Elsevier Inc. All rights reserved.

1. Introduction

For any polynomial $p \in \mathbb{C}[z]$, the classical Gauss-Lucas Theorem states that the zeros of the derivative p' lie inside the closed convex hull of the zeros of p. Jensen proved a more precise result in the case where the polynomial p has real coefficients. Jensen's theorem states that all of the non-real zeros of the derivative of a polynomial $p \in \mathbb{R}[x]$ must lie in at least one of the Jensen discs for p, where a *Jensen disc* for p is a closed disc whose diameter connects a conjugate pair of non-real zeros of p [4].

Either of the results just mentioned demonstrate that the differentiation operator on $\mathbb{R}[x]$ (or $\mathbb{C}[x]$, in the case of the Gauss-Lucas Theorem) maps polynomials with zeros in a strip

 $\sigma(A) = \{z \colon |\mathrm{Im}\, z| \le A\}$

to polynomials with zeros in that same strip. Thus, differentiation is an example of a *zero-strip preserving* operator. Bleecker and Csordas use a result of de Bruijn to demonstrate that some differential operators

https://doi.org/10.1016/j.jmaa.2018.08.025 0022-247X/© 2018 Elsevier Inc. All rights reserved.

 ^{*} This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
* Corresponding author.

E-mail addresses: cardon@math.byu.edu (D.A. Cardon), tforgacs@csufresno.edu (T. Forgács), apiotrowski@alaska.edu (A. Piotrowski), esorensencapps@gmail.com (E. Sorensen), white.jason.c@gmail.com (J.C. White).

such as $\exp(-\alpha^2 D^2/2)$, where $\alpha > 0$, map polynomials with zeros in the strip $\sigma(A)$ to a strictly smaller strip $\sigma(A')$, where $A' = \sqrt{\max\{A^2 - \alpha^2, 0\}}$ (see [1, Theorem 3.2]). Such operators are called *complex zero-strip decreasing operators* and they have been studied in detail by the first author [2].

For a closed convex sector

$$S(\theta) = \{z \colon |\arg z| \le \theta \text{ or } z = 0\} \qquad (0 \le \theta < \pi/2),$$

there are known results which demonstrate the existence of *zero-sector preserving operators* (see, for example, [3, Chapter 4]). One of the main results of this paper is to demonstrate the existence of a collection of zero-sector *reducing* operators (Theorem 2.5). We do so by proving a Jensen disc-type theorem for polynomials with their zeros in a sector (Theorem 2.2).

In the extreme case, the strip degenerates to the real line and the sector degenerates to the non-negative real axis. In [8], Pólya and Schur characterized all linear operators on $\mathbb{R}[z]$ of the form $T[z^n] = \gamma_n z^n$ which preserve the location of zeros on these limiting sets. They termed the sequence $\{\gamma_k\}_{k=0}^{\infty}$ corresponding to an operator T which maps polynomials with only real zeros to polynomials with only real zeros a *multiplier* sequence of the first kind. Similarly, they termed the sequence $\{\gamma_k\}_{k=0}^{\infty}$ corresponding to an operator T which maps polynomials with only positive real zeros to polynomials with only real zeros a *multiplier* sequence of the second kind. A multiplier sequence of the second kind can be thought of as an operator which maps polynomials with zeros in the sector S(0) to polynomials with zeros in the double sector

$$\pm S(0) = \{ z \colon z \in S(0) \text{ or } -z \in S(0) \}.$$

Our results will yield new proofs of some of the classical results. In particular, we will provide a new proof of a result due to Laguerre [5] which states that the sequence $\{\cos(\lambda + k\theta)\}_{k=0}^{\infty}$, where λ and θ are real, is a multiplier sequence of the second kind (Corollary 2.3).

Remark 1. Throughout this paper, we will continue to use the notation $\sigma(A)$, $S(\theta)$, and $\pm S(\theta)$ to denote the strip, sector, and double sector, respectively, as defined in this introduction.

2. Some zero-sector reducing operators

We next extend the notion of a Jensen disc from the setting of horizontal strips containing the roots of real polynomials to the case in which the roots of real polynomials belong to a sector.

Definition 2.1. Suppose a and b are positive real numbers and a+ib is a zero of $p \in \mathbb{R}[z]$ with $\arg(a+ib) = \theta$. For $0 \le \alpha \le \pi$ and $|\sec \alpha| < \sec \theta$, we define the **Jensen sector-disc** corresponding to a+ib and α as the closed disc $\Delta(a, b; \alpha)$ with center $c = (\cos \alpha)(a^2 + b^2)/a = a \cos \alpha \sec^2 \theta$, and radius $r = \sqrt{c^2 - a^2 - b^2}$. In the case $|\sec \alpha|$ is not less than $\sec \theta$, we define $\Delta(a, b; \alpha) = \emptyset$. The Jensen sector-disc is depicted in Fig. 1.

Remark 2. Geometrically, the Jensen sector-disc $\Delta(a, b; \alpha)$ is the disc which is tangent to the two rays $\arg z = \pm \gamma$, where $\cos \gamma = \cos \theta \sec \alpha$, with the points of tangency lying on the circle |z| = |a + ib| (see Fig. 1).

Theorem 2.2. Suppose

$$p(z) = \prod_{k=1}^{m} (z - x_k) \cdot \prod_{k=1}^{n} [(z - a_k)^2 + b_k^2],$$

Download English Version:

https://daneshyari.com/en/article/8959551

Download Persian Version:

https://daneshyari.com/article/8959551

Daneshyari.com