On zero-sector reducing operators ${ }^{\text {su }}$

David A. Cardon ${ }^{\text {a }}$, Tamás Forgács ${ }^{\text {b }}$, Andrzej Piotrowski ${ }^{\text {c,* }}$, Evan Sorensen ${ }^{\text {a }}$, Jason C. White ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
b Department of Mathematics, M/S PB108, Fresno, CA 93740-8001, USA
c Department of Natural Sciences, M/S SOB1, University of Alaska Southeast, Juneau, AK 99801, USA

A R T I C L E I N F O

Article history:

Received 23 March 2018
Available online 23 August 2018
Submitted by V. Andrievskii

Keywords:

Zeros
Entire functions
Jensen disc
Zero-sector reducing operator
Multiplier sequences

Abstract

We prove a Jensen-disc type theorem for polynomials $p \in \mathbb{R}[z]$ having all their zeros in a sector of the complex plane. This result is then used to prove the existence of a collection of linear operators $T: \mathbb{R}[z] \rightarrow \mathbb{R}[z]$ which map polynomials with their zeros in a closed convex sector $|\arg z| \leq \theta<\pi / 2$ to polynomials with zeros in a smaller sector $|\arg z| \leq \gamma<\theta$. We, therefore, provide the first example of a zero-sector reducing operator.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For any polynomial $p \in \mathbb{C}[z]$, the classical Gauss-Lucas Theorem states that the zeros of the derivative p^{\prime} lie inside the closed convex hull of the zeros of p. Jensen proved a more precise result in the case where the polynomial p has real coefficients. Jensen's theorem states that all of the non-real zeros of the derivative of a polynomial $p \in \mathbb{R}[x]$ must lie in at least one of the Jensen discs for p, where a Jensen disc for p is a closed disc whose diameter connects a conjugate pair of non-real zeros of p [4].

Either of the results just mentioned demonstrate that the differentiation operator on $\mathbb{R}[x]$ (or $\mathbb{C}[x]$, in the case of the Gauss-Lucas Theorem) maps polynomials with zeros in a strip

$$
\sigma(A)=\{z:|\operatorname{Im} z| \leq A\}
$$

to polynomials with zeros in that same strip. Thus, differentiation is an example of a zero-strip preserving operator. Bleecker and Csordas use a result of de Bruijn to demonstrate that some differential operators

[^0]such as $\exp \left(-\alpha^{2} D^{2} / 2\right)$, where $\alpha>0$, map polynomials with zeros in the strip $\sigma(A)$ to a strictly smaller strip $\sigma\left(A^{\prime}\right)$, where $A^{\prime}=\sqrt{\max \left\{A^{2}-\alpha^{2}, 0\right\}}$ (see [1, Theorem 3.2]). Such operators are called complex zero-strip decreasing operators and they have been studied in detail by the first author [2].

For a closed convex sector

$$
S(\theta)=\{z:|\arg z| \leq \theta \text { or } z=0\} \quad(0 \leq \theta<\pi / 2),
$$

there are known results which demonstrate the existence of zero-sector preserving operators (see, for example, [3, Chapter 4]). One of the main results of this paper is to demonstrate the existence of a collection of zero-sector reducing operators (Theorem 2.5). We do so by proving a Jensen disc-type theorem for polynomials with their zeros in a sector (Theorem 2.2).

In the extreme case, the strip degenerates to the real line and the sector degenerates to the non-negative real axis. In [8], Pólya and Schur characterized all linear operators on $\mathbb{R}[z]$ of the form $T\left[z^{n}\right]=\gamma_{n} z^{n}$ which preserve the location of zeros on these limiting sets. They termed the sequence $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ corresponding to an operator T which maps polynomials with only real zeros to polynomials with only real zeros a multiplier sequence of the first kind. Similarly, they termed the sequence $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ corresponding to an operator T which maps polynomials with only positive real zeros to polynomials with only real zeros a multiplier sequence of the second kind. A multiplier sequence of the second kind can be thought of as an operator which maps polynomials with zeros in the sector $S(0)$ to polynomials with zeros in the double sector

$$
\pm S(0)=\{z: z \in S(0) \text { or }-z \in S(0)\} .
$$

Our results will yield new proofs of some of the classical results. In particular, we will provide a new proof of a result due to Laguerre [5] which states that the sequence $\{\cos (\lambda+k \theta)\}_{k=0}^{\infty}$, where λ and θ are real, is a multiplier sequence of the second kind (Corollary 2.3).

Remark 1. Throughout this paper, we will continue to use the notation $\sigma(A), S(\theta)$, and $\pm S(\theta)$ to denote the strip, sector, and double sector, respectively, as defined in this introduction.

2. Some zero-sector reducing operators

We next extend the notion of a Jensen disc from the setting of horizontal strips containing the roots of real polynomials to the case in which the roots of real polynomials belong to a sector.

Definition 2.1. Suppose a and b are positive real numbers and $a+i b$ is a zero of $p \in \mathbb{R}[z]$ with $\arg (a+i b)=\theta$. For $0 \leq \alpha \leq \pi$ and $|\sec \alpha|<\sec \theta$, we define the Jensen sector-disc corresponding to $a+i b$ and α as the closed disc $\Delta(a, b ; \alpha)$ with center $c=(\cos \alpha)\left(a^{2}+b^{2}\right) / a=a \cos \alpha \sec ^{2} \theta$, and radius $r=\sqrt{c^{2}-a^{2}-b^{2}}$. In the case $|\sec \alpha|$ is not less than $\sec \theta$, we define $\Delta(a, b ; \alpha)=\emptyset$. The Jensen sector-disc is depicted in Fig. 1.

Remark 2. Geometrically, the Jensen sector-disc $\Delta(a, b ; \alpha)$ is the disc which is tangent to the two rays $\arg z= \pm \gamma$, where $\cos \gamma=\cos \theta \sec \alpha$, with the points of tangency lying on the circle $|z|=|a+i b|$ (see Fig. 1).

Theorem 2.2. Suppose

$$
p(z)=\prod_{k=1}^{m}\left(z-x_{k}\right) \cdot \prod_{k=1}^{n}\left[\left(z-a_{k}\right)^{2}+b_{k}^{2}\right],
$$

https://daneshyari.com/en/article/8959551

Download Persian Version:

https://daneshyari.com/article/8959551

Daneshyari.com

[^0]: th This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

 * Corresponding author.

 E-mail addresses: cardon@math.byu.edu (D.A. Cardon), tforgacs@csufresno.edu (T. Forgács), apiotrowski@alaska.edu (A. Piotrowski), esorensencapps@gmail.com (E. Sorensen), white.jason.c@gmail.com (J.C. White).

