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We consider some random series parametrised by Martin-Löf random sequences. 
The simplest case is that of Rademacher series, independent of a time parameter. 
This is then extended to the case of Fourier series on the circle with Rademacher 
coefficients. Finally, a specific Fourier series which has coefficients determined by a 
computable function is shown to converge to an algorithmically random Brownian 
motion.
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1. Introduction

Since infinite series provide a natural model for games of chance, a recurring problem in early twentieth-
century probability theory was the summation of series with random coefficients. There was, however, no 
satisfying notion of what constitutes a random sequence. The attempt to formalise the notion informed 
the development of the field, and for instance served as the basis of von Mises’ axiomatisation of proba-
bility theory [17]. This was of course supplanted by Kolmogorov’s axiomatisation [10], and the problem of 
characterising randomness did not remain central to probability theory.

The work of Borel [2] can be considered the first use of the concept of randomness in analysis, according 
to [14], and concerns averages of sums of randomly determined quantities. A similar type of problem to 
that which concerned Borel can be phrased, in modern terms, as a problem of Rademacher series. This 
can be seen as a model of an infinite coin toss, with different wagers being placed on each successive toss. 
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A Rademacher sequence on a probability space (Ω, Σ, P) is defined as a sequence (εn) of random variables 
on Ω such that P(εn = 1) = P(εn = −1) = 1/2, n = 1, 2, . . . . A real Rademacher series is one of the form

∞∑
n=1

εnun, (1.1)

where (εn) is a Rademacher sequence and (un) is a sequence of given real numbers. We shall focus on 
Rademacher sequences generated by the binary expansion of reals in [0, 1], with εn(x) = 1 if the nth digit 
in the expansion of x is 1, and εn(x) = −1 otherwise. Steinhaus [16] first showed that such series converge 
almost surely with respect to Lebesgue measure when 

∑
u2
n converges, and diverge a.s. otherwise.

Major advances in the early study of random series were published by Paley and Zygmund in 1930 [15], 
and later in collaboration with Wiener [14]. Most relevant to our purposes was their study of the convergence 
or divergence of series of the form

∞∑
n=−∞

εnane
int, (1.2)

where (εn) is a Rademacher sequence as above and the (an) are fixed reals. Similar results to those of 
Steinhaus were obtained, in that almost sure (with respect to Lebesgue measure) convergence or divergence 
of such series were dictated by the convergence or divergence of the series 

∑
a2
n.

One might ask whether the convergence or divergence of the above series can contribute to the discussion 
of what constitutes a random sequence or number. Of course, one could reasonably expect reals in the interval 
[0, 1] to be almost surely random. Indeed, Borel already recognised that there can be only countably many 
elements of the ‘practical’ continuum, consisting of reals determined by some law [18], which therefore has 
measure 0. However, the null sets in the above series where convergence fails are not uniquely specified, and 
we cannot classify numbers as random or not based solely on measure theoretic terms.

Several notions of randomness arose from the theory of computability, some of which were fittingly 
informed by measure theoretic concepts in the form of “tests” for randomness (see, for instance, [13] for an 
overview). The purpose of this paper is to explore whether it is possible to reconcile one of the formulations 
of algorithmic randomness with the idea of randomness dictated by the convergence or divergence of certain 
series. Our results show that, with certain computability restrictions, Martin-Löf randomness provides such 
a formulation.

The connection between Martin-Löf randomness and almost sure results in probability is certainly not 
new. Most germane to the final part of this paper is the construction of algorithmically random Brownian 
motion by Fouché. In [7], it is shown that there is a bijection between the set of Martin-Löf random sequences 
and a subset of C[0, 1] of Wiener measure 1, the so-called complex oscillations, which reflect many properties 
of Brownian motion, such as the law of the iterated logarithm [9]. This bijection was achieved through the 
use of Franklin–Wiener series. Using the results in this paper, we show that complex oscillations may also be 
constructed through the use of Fourier–Wiener series, similar to Wiener’s original construction of Brownian 
motion in [19]. In this paper we shall use Wiener’s construction as presented in the book of Kahane [8].

1.1. Structure of the paper

Section 2.1 presents the necessary background in algorithmic randomness that will be used throughout 
the paper. In Section 2.2, we present some definitions that will be needed, as well as the main theorems 
regarding random series that we will find corresponding algorithmically random versions of in Sections 3
to 5. Section 2.3 provides all of the necessary background on algorithmically random Brownian motion 
required for Section 6, but is not required for earlier sections of the paper.
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