

Contents lists available at ScienceDirect

Advances in Mathematics

Boundary operators associated to the σ_k -curvature

Jeffrey S. Case ^{a,1}, Yi Wang ^{b,*,2}

^a 109 McAllister Building, Penn State University, University Park, PA 16802, United States

^b 3400 N. Charles St., 404 Krieger Hall, Mathematics Department, Baltimore, MD 21218, United States

ARTICLE INFO

Article history: Received 13 September 2017 Accepted 24 July 2018 Available online xxxx Communicated by O. Savin

MSC: primary 58J32 secondary 53C21, 35J66, 58E11

Keywords: Conformally covariant operator Boundary operator σ_k -Curvature Sobolev trace inequality Fully nonlinear PDE

ABSTRACT

We study conformal deformation problems on manifolds with boundary which include prescribing $\sigma_k \equiv 0$ in the interior. In particular, we prove a Dirichlet principle when the induced metric on the boundary is fixed and an Obata-type theorem on the upper hemisphere. We introduce some conformally covariant multilinear operators as a key technical tool.

© 2018 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: jscase@psu.edu (J.S. Case), ywang@math.jhu.edu (Y. Wang).

 $^{^{1}}$ JSC was supported by a grant from the Simons Foundation (Grant No. 524601).

 $^{^{2}\,}$ YW was partially supported by NSF Grant No. DMS-1612015.

1. Introduction

Let (X^{n+1}, g_0) be a compact Riemannian manifold. The Ricci decomposition

$$Rm = W + P \wedge g_0$$

of the Riemann curvature tensor Rm into the conformally invariant Weyl curvature W and the Kulkarni–Nomizu product of the Schouten tensor

$$P := \frac{1}{n-1} \left(\text{Ric} - \frac{R}{2n} g_0 \right)$$

and the metric g_0 implies that the behavior of the full Riemann curvature tensor under conformal deformation is completely controlled by the Schouten tensor. For this reason, Viaclovsky initiated [13] the study of the conformal properties of the σ_k -curvatures σ_k^g ; i.e. $\sigma_k^g := \sigma_k(g^{-1}P_g)$ is the k-th elementary symmetric functions of the Schouten tensor of g. Note that $\sigma_1^g = R_g/2n$ is proportional to the scalar curvature of g. Crucially, the σ_k -curvatures are variational if and only if $k \leq 2$ or g_0 is locally conformally flat [1, 13]. In particular, if $k \leq 2$ or g_0 is locally conformally flat, then the total σ_k -curvature functional, $\mathcal{F}(g) := \int_X \sigma_k^g \, \mathrm{dvol}_g$, is such that

$$\frac{d}{dt}\Big|_{t=0} \mathcal{F}_k\left(e^{2t\Upsilon}g\right) = (n+1-2k) \int_{\mathcal{X}} \Upsilon \sigma_k^g \, \mathrm{dvol}_g \tag{1.1}$$

for all metrics g in the conformal class $[g_0]$ and all $\Upsilon \in C_0^{\infty}(X)$. Equation (1.1) realizes σ_k as the conformal gradient of \mathcal{F}_k when $n+1 \neq 2k$; Brendle and Viaclovsky found [2] a different functional with conformal gradient σ_k when n+1=2k.

When X^{n+1} has nonempty boundary M^n , S. Chen introduced [6] the H_k -curvatures as a family of invariants on M which are polynomial in the restriction $P|_{TM}$ of the Schouten tensor to M and the second fundamental form A of M. For example, $H_1 = \frac{1}{n} \operatorname{tr} A$ is the mean curvature; see Section 2 for the general formula for H_k . A key property of the H_k -curvatures is that they enable the study of conformal deformations of the σ_k -curvature on manifolds with boundary by variational methods: If $k \leq 2$ or g_0 is locally conformally flat, then the functional

$$S_k(g) := \int_X \sigma_k^g \operatorname{dvol}_g + \oint_M H_k^g \operatorname{dvol}_{i^*g},$$

where $i: M \to X$ is the inclusion mapping, satisfies

$$\frac{d}{dt}\Big|_{t=0} \mathcal{S}_k\left(e^{2t\Upsilon}g\right) = (n+1-2k) \left| \int\limits_X \Upsilon \sigma_k^g \operatorname{dvol}_g + \oint\limits_M \Upsilon H_k^g \operatorname{dvol}_{i^*g} \right|$$
(1.2)

Download English Version:

https://daneshyari.com/en/article/8959564

Download Persian Version:

https://daneshyari.com/article/8959564

<u>Daneshyari.com</u>