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Point-counting data are a mainstay of petrography, micropalaeontology and palynology. Conventional 
statistical analysis of such data is fraught with problems. Commonly used statistics such as the arithmetic 
mean and standard deviation may produce nonsensical results when applied to point-counting data. This 
paper makes the case that point-counts represent a distinct class of data that requires different treatment. 
Point-counts are affected by a combination of (1) true compositional variability and (2) multinomial 
counting uncertainties. The relative magnitude of these two sources of dispersion can be assessed by 
a chi-square statistic and test. For datasets that pass the chi-square test for homogeneity, the ‘pooled’ 
composition is shown to represent the optimal estimate for the underlying population. It is obtained by 
simply adding together the counts of all samples and normalising the resulting values to unity. However, 
more often than not, point-counting datasets fail the chi-square test. The overdispersion of such datasets 
can be captured by a random effects model that combines a logistic normal population with the usual 
multinomial counting uncertainties. This gives rise to the concept of a ‘central’ composition as a more 
appropriate way to average overdispersed data. Two- or three-component datasets can be displayed 
on radial plots and ternary diagrams, respectively. Higher dimensional datasets may be visualised and 
interpreted by Correspondence Analysis (CA). This is a multivariate ordination technique that is similar 
in purpose to Principal Component Analysis (PCA). CA and PCA are both shown to be special cases of 
Multidimensional Scaling (MDS). Generalising this insight to multiple datasets allows point-counting data 
to be combined with other data types such as chemical compositions by means of 3-way MDS. All the 
techniques introduced in this paper have been implemented in the provenance R-package, which is 
available from http://provenance .london -geochron .com.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The mineralogical composition of silicilastic sediments can be 
determined by tallying the occurrence of various minerals in a 
representative sample of (200–400, say) grains (Dryden, 1931; Van 
der Plas and Tobi, 1965; Weltje, 2002). Similarly, the fossil content 
of a deep sea sediment core may be characterised by tabulating 
the relative abundances of various species among >100 randomly 
selected specimens (Patterson and Fishbein, 1989; Buzas, 1990; 
Fatela and Taborda, 2002). Or palaeobiological environments may 
be reconstructed by tabulating the relative frequency of different 
types of pollen in a palaeosol or charcoal (Barkley, 1934; Clark, 
1982; Weng et al., 2006).

These are all examples of multivariate counting experiments, 
in which the unknown proportions of different species of miner-
als, fossils or pollen are estimated by counting a finite number 
of randomly selected items from a representative sample. Despite 
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the widespread use of this type of data in the Earth Sciences and 
related fields, their statistical analysis is demonstrably underdevel-
oped.

For example, there currently exists no agreed method to av-
erage multi-sample point-counting datasets, or to quantify point-
counting data dispersion. Traditionally, these operations were done 
by taking the arithmetic mean and standard deviation, respectively. 
Unfortunately, this may easily produce nonsensical results. For ex-
ample, Weltje (2002) shows that the common practice of using 
‘2-sigma’ confidence bounds around the arithmetic mean can pro-
duce physically impossible negative values when applied to petro-
graphic point-counts.

To solve these problems, Weltje (2002) argues that point-counts 
should be treated as compositional data, which are defined as 
“vectors representing parts of a whole that only carry relative 
information” (Pawlowsky-Glahn and Buccianti, 2011). According 
to this definition, compositional data can be renormalised to a 
constant sum (e.g., 100% if the composition is expressed as per-
centages, or 1 if fractions are used) without loss of information.
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Aitchison (1982, 1986) shows that the statistical analysis of such 
data is best carried out using a simple logratio transformation.

To illustrate this approach, let {ai,bi, ci} be a three-component 
dataset, where ai + bi + ci = 1 for 1 ≤ i ≤ m. Then this dataset can 
be mapped to a bivariate Euclidean data space as follows:

ui = ln(ai/ci) and vi = ln(bi/ci) (1)

After performing the desired statistical analysis (such as calcu-
lating averages and confidence regions) on the transformed data 
{ui, vi}, the results can be mapped back to the ternary diagram by 
means of an inverse logratio transformation:

ai = exp[ui]
exp[ui] + exp[vi] + 1

,

bi = exp[vi]
exp[ui] + exp[vi] + 1

, and (2)

ci = 1

exp[ui] + exp[vi] + 1

This procedure yields geologically meaningful (geometric)
means and confidence regions. Weltje (2002)’s adoption of logratio 
statistics to point-counting data represents a huge improvement 
over the ‘crude’ statistics employed previously. But it does not 
solve all our problems. There are two crucial differences between 
point counts and the classical compositional data discussed by 
Aitchison (1982, 1986).

First, point-counting data are associated with significant (count-
ing) uncertainties, which are ignored by classical compositional 
data analysis. For a single sample, this uncertainty is adequately 
described by multinomial counting statistics (Section 6 of Weltje, 
2002). But for larger datasets comprised of multiple samples, ex-
isting procedures to construct confidence regions (as discussed in 
Section 7 of Weltje, 2002) are inadequate because they lump to-
gether the ‘observational’ dispersion caused by counting statistics 
and the true ‘geological’ dispersion. Bloemsma and Weltje (2015)
describe a method to disentangle these two sources of uncertainty 
in a logratio context. They show that deconvolution of (spectro-
scopic) count data into a scale vector and a proportions matrix 
significantly improves multivariate analysis.

Second, point-counting data often contain zero values, which 
are incompatible with the log-ratio transformation defined in 
Equation (1). This problem also applies to the aforementioned ap-
proach by Bloemsma and Weltje (2015). These authors circum-
vented the occurrence of sporadic zeros by replacing them with 
small positive numbers. This and alternative ‘imputation’ strategies 
are further discussed by Martín-Fernández et al. (2003). When the 
number of zeros is small, imputation is considered to have a min-
imal influence on the data covariance structure. However, some 
point-counting datasets are dominated by zeros. So the presence 
of such values is not a cosmetic problem, but a fundamental char-
acteristic of this particular data type. The statistical treatment of 
point-counting data needs to address this issue at a deeper level.

The present paper solves these long standing problems us-
ing established statistical methods adopted from other disciplines. 
Much of the paper is based on the work of Galbraith (2005) in 
fission track geochronology. The fission track method is based on 
the ratio of the number of spontaneous 238U-tracks to the number 
of neutron-induced 235U-tracks per unit area in accessory min-
erals such as apatite or zircon. This is equivalent to a simple 
two-component point-counting problem. Section 2 uses this equiv-
alence to derive the concept of a ‘pooled composition’. We will 
show that the latter represents the most reliable (in terms of accu-
racy and precision) average of homogeneous point-counting data.

The analytical uncertainty of individual point-counting propor-
tions may greatly vary between samples. Section 3 introduces Gal-
braith (1988)’s radial plot as a graphical means of visualising such 

Table 1
Two synthetic ternary point-counting datasets. Data 1 was drawn from a single 
multinomial distribution with population proportions of 45%, 45% and 10% for com-
ponents a, b and c, respectively. Data 2 was drawn from a continuous mixture of 
multinomial distributions whose true proportions were drawn from a bivariate lo-
gistic normal distribution with a geometric mean of 45% for a and b, 10% for c, and 
100% dispersion with a correlation coefficient of −0.5 between the two logratio di-
mensions. R , C and N refer to the row, column, and total sums, respectively.

Data 1 Data 2

# a b c R # a b c R

1 16 18 4 38 1 23 24 5 52
2 25 17 3 45 2 60 24 7 91
3 18 18 0 36 3 45 43 12 100
4 7 14 3 24 4 2 53 4 59
5 12 10 3 25 5 8 32 10 50
6 32 30 13 75 6 53 21 23 97
7 35 38 13 86 7 1 6 3 10
8 20 20 7 47 8 2 17 1 20
9 10 9 3 22 9 10 10 4 24
10 29 36 5 70 10 2 35 3 40
11 34 34 9 77 11 29 21 3 53
12 22 47 12 81 12 2 13 0 15
13 9 9 2 20 13 3 9 0 12
14 37 36 13 86 14 34 1 0 35
15 46 25 16 87 15 28 19 4 51
16 50 37 7 94 16 49 11 3 63
17 28 34 8 70 17 0 72 2 74
18 39 50 6 95 18 55 28 13 96
19 44 36 10 90 19 7 8 3 18
20 28 21 4 53 20 20 5 2 27

C 541 539 142 N = 1222 C 433 452 90 N = 987

‘heteroscedastic’ data. Originally developed for fission track data, 
the radial plot can also be used to display point-counting ratios, 
which frequently occur in the Earth Sciences. Radial plots allow a 
visual assessment of the degree to which counting uncertainties 
can explain the observed scatter between multiple ratio estimates. 
Section 4 presents a formal statistical test to make this assessment 
more quantitative.

The pooled composition is only applicable to samples that pass 
this chi-square test for sample homogeneity. Multi-sample datasets 
that fail the chi-square test are said to be ‘overdispersed’ with re-
spect to the counting uncertainties. The degree of overdispersion 
may be quantified by means of a continuous mixture model (Sec-
tion 5). This model leads to the concept of a ‘central composition’ 
as a better alternative to the pooled composition of Section 2. Sec-
tion 6 generalises the continuous mixture model from two to three 
(or more) components.

Finally, Section 7 introduces Correspondence Analysis (CA) as 
a useful ordination technique for multivariate point-counting data. 
CA is closely related to compositional Principal Component Analy-
sis (PCA). But unlike the latter method, it does not suffer from the 
zero counts problem.

All the techniques discussed above will be illustrated with a 
combination of synthetic and real examples. The methods of Sec-
tions 2–6 will use the two datasets shown in Table 1. Data 1 
consists of 20 random samples of 23–94 items each, which were 
drawn from a discrete trinomial distribution with 45% of com-
ponent a, 45% of component b and 10% of component c. Data 2 
comprises a further 20 samples that were drawn from a contin-
uous distribution whose mode is the same as that of Data 1, but 
which adds 100% of dispersion around this mode. Thus, Data 2 has 
two sources of dispersion (counting error and true population dis-
persion), whereas Data 1 only has one (counting error). Note that 
both datasets contain fewer counts per sample than is custom-
ary in real world applications. But they are nevertheless realistic 
if we consider them to be ternary subcompositions of higher di-
mensional datasets.
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