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A B S T R A C T

Diffusion processes are instrumental to describe the movement of a continuous quantity in a network of inter-
acting agents. Here, we present a framework for diffusion in networks and study in particular two classes of
agent interactions depending on whether the total network quantity follows a conservation law. Focusing on
probabilistic, asymmetric interactions between agents, we define how the dynamics of conservative and non-
conservative networks relate to the weighted in-degree and out-degree Laplacians. For uncontrolled networks,
we compare the convergence behavior of both types of networks as a function of the eigenvectors of the
weighted graph Laplacians. For networks with exogenous controls, we also analyze convergence and provide a
method to measure the difference between conservative and non-conservative network dynamics based on the
comparison of their respective reachable sets. The presented network control framework enables the com-
parative study of the dynamic and asymptotic network behavior for conservative and non-conservative net-
works.

1. Introduction

Multi-agent network dynamics received ample research interest
over the last decade in the context of group coordination (Jadbabaie,
Lin, & Morse, 2003) distributed algorithms (Dimakis, Kar, Moura,
Rabbat, & Scaglione, 2010), network control (Pasqualetti, Zampieri, &
Bullo, 2014), distributed optimization (Chen & Sayed, 2013), consensus
problems (Acemoglu & Ozdaglar, 2011; Erkan & Akar, 2016; Mallada,
Freeman et al., 2016; Proskurnikov, 2011; Wang & Hong, 2008), and
herding and flocking behavior (Blondel, Hendrickx, Olshevsky, &
Tsitsiklis, 2005). Network dynamics involve inter-agent interactions
that lead to the diffusion of a continuous quantity within a network
(Acemoglu, Como, Fagnani, & Ozdaglar, 2013; Como, Savla, Acemoglu,
Dahleh, & Frazzoli, 2011; Yildiz, Scaglione, & Ozdaglar, 2010). In this
work, we establish a probabilistic diffusion framework that describes in
continuous time the movement of such a continuous quantity within a
network, accounting for the stochasticity and the nature of the inter-
actions between agents. Going beyond symmetric, unweighted graphs

(Banerjee & Jost, 2008), we focus on weighted digraphs with asym-
metric update rules. The main contribution of this framework is two-
fold. First, we make a connection between two linear update protocols
and their corresponding network dynamics. Although these protocols
are different in nature with regard to the conservation of total network
quantity, they can result in identical network behavior under certain
circumstances. Second, we enable the comparison between the proto-
cols by studying the steady-state and transient behavior under both
protocols, in the presence and absence of external control.

Many dynamical processes that occur over networks rely on pair-
wise interactions between network nodes that adjust their values ac-
cording to a rule of interaction. There exists a large body of literature
where the network dynamics are based on different graph Laplacian
matrices (Yan, Teng, Lerman, & Ghosh, 2016). A common feature of
this literature is that the total amount of quantity present in the net-
work does not follow a conservation law (Acemoglu, Nedic, & Ozdaglar,
2008; Jadbabaie et al., 2003; Olfati-Saber, Fax, & Murray, 2007; Olfati-
Saber & Murray, 2004; Tcha & Pliska, 1977). In this work instead, we
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present an inter-agent update rule that follows a conservation law and
contrast it with a non-conservative update rule that is typically found in
the literature. Considering both protocols, our framework can capture a
wide range of network phenomena: financial and trade assets, bio-
chemical systems, as well as human migration represent conservative
flows (Barzel & Barabási, 2013; Mirzaev & Gunawardena, 2013), while
the propagation of opinions follow non-conservative network dy-
namics. We derive the corresponding matrix differential equation that
describes the diffusion of the considered quantity over the network, and
highlight the differences in transient and stationary behavior for both
update rules, taking into account the effects of network asymmetry.

Furthermore, we address network control by extending the homo-
geneous differential equation that describes the diffusion process to its
inhomogeneous form. By doing so, we can model the addition of the
considered quantity to the multi-agent network. We illustrate how
constant control actions can result in changes of the system matrix that
governs the network dynamics, and we define the convergence beha-
vior of networks with exogenous excitation under given constraints on
the input vector and network topology. When the control actions be-
long to a function space, we also provide a method to define the set of
reachable network states based on the support function of non-empty
closed convex sets. This method allows us to analyze how the con-
servative and non-conservative update protocol result in different
reachable sets using the Hausdorff distance between these sets.

The remainder of the paper is structured as follows. Section 2 in-
troduces the notation used throughout the paper and the Laplacian
matrices that will be instrumental to characterize the network dy-
namics. Section 3 introduces two essential update rules to model dif-
fusion in networks. Section 4 discusses the stability and convergence
characteristics of conservative and non-conservative networks without
control inputs, and Section 5 covers network control by extending the
homogeneous equations to their inhomogeneous forms. Section 5 also
presents a method to calculate the reachable set of network states. Fi-
nally, Section 6 provides some concluding remarks.

2. Preliminaries

We consider a population � of interacting agents � ,i where
��∈ = … ∈ +i n n{1, 2, , : }. All agents possess a continuous node

property �∈ ≥S t t t( ) , ,i 0 and the node properties are gathered in the
state vector �= … ∈S t S t S t S t( ) [ ( ) ( )] , ( )n

n
1

T . Assuming that =t 00 and
given the initial conditions =S S(0) ,0 the node properties evolve over
time according to a stochastic update process where property updates
occur at times determined by a Poisson process. The probabilistic in-
teractions between the agents can be described by a weighted digraph

� �=
→

G w( , , ), where � is the set of agents and �
→

is the set of directed
links (i, j) between pairs of agents from � . In this work, we consider �

and �
→

to be constant over time. The weight function ��
→

↦ +w: cap-
tures for each edge in the network the update rate as well as the liability
between the interacting agents. The weighted adjacency matrix can be
represented as

�= ⎧
⎨⎩

∈
→

A i j w i j i j( , ) ( , ) if ( , ) ,
0 otherwise .

G
(1)

The weighted in-degree and out-degree matrices are diagonal matrices
with diagonal elements given by

∑=D j j A i j( , ) ( , ) ,G
i

G
(in)

(2)

∑=D i i A i j( , ) ( , ) .G
j

G
(out)

(3)

Since the interactions between agents can be asymmetric, we define
two Laplacians that refer to the in-degree and the out-degree of each
node. We define the weighted in-degree and out-degree Laplacians as

= −L D A ,G G G
(in) (in)

(4)

= −L D A .G G G
(out) (out)

(5)

3. Stochastic update rules

Depending on the update rule applied in the probabilistic interac-
tions between nodes, we characterize the flow dynamics of networks
operating under different protocols. Here, we describe two main classes
of linear update rules that result in linear, time-invariant matrix dif-
ferential equations in the node property. These update rules are dis-
tinguished by the conservation or the non-conservation of the total
property initially present in the network. The networks applying the
conservative and non-conservative protocols will be referred to as
conservative and non-conservative networks, respectively.

3.1. Conservative networks

We first consider a protocol where the total property in the network
is conserved, i.e., = + ⋯+S S t S t( ) ( )tot n1 is constant over time.
Conservative updating is relevant for the description of conservative
flow dynamics between network nodes, including the flow of material
and physical assets. In this respect, conservative networks are able to
represent stylized instances of hydraulic networks, human mobility
(Barzel & Barabási, 2013), or biochemical systems (Mirzaev &
Gunawardena, 2013). Here, agents obey the conservative update rule

+ = +
+ = −

S t t S t C S t
S t t C S t

( Δ ) ( ) ( )
( Δ ) (1 ) ( ) ,

i i ij j

j ij j (P1)

where �∈i j, , �∈
→

i j( , ) . The parameter Cij∈ (0, 1] is a measure of
liability or responsibility of agent j towards agent i, and Δt is an in-
finitesimal time interval. On every edge �∈

→
i j( , ) , a stochastic process

takes place on the probability space ��(Ω, , ), with sample space
�= +Ω , the σ-algebra � of Borel sets on �+, and probability measure

� . We consider a counting process on the positive reals according to an
independent, stationary Poisson process with rate rij>0. The counting
process has also an interpretation as a ticking clock with exponentially
distributed inter-event times. The protocol (P1) is executed for nodes i
and j when the independent Poisson clock of (i, j) ticks at time t. The
following Lemma characterizes the property dynamics of the expected
value of S in conservative networks.

Lemma 1. Let S t( ) denote the expected value of S(t). The dynamics of the
expected value for a network applying (P1) are defined by the governing
equation

=S t QS t˙ ( ) ( ) , (A)

where = −Q L ,G
(in) the weight function is defined as =w i j C r( , ) ,ij ij and

= ⎧
⎨⎩

≠
− ∑ =≠

Q
C r i j

C r i j
if ,
if .ij

ij ij

k i ki ki (6)

Proof. We first note that the total update rate for a node �∈i is given
by = ∑r r ,i j ij and that the total update rate of the network is given by
= ∑r ri i. Assume that a global network clock is ticking at rate r. Then,

the probability that the clock will activate edge (i, j) is given by rij/r,
where in the limit of large-scale networks r≈ 1/Δt. Consequently, when
an outgoing edge (i, j) of node i is triggered with probability rij Δt, the
probabilistic update of the node properties involved in the update
according to (P1) is given by

∑+ − =
≠

S t t S t r t C S t( Δ ) ( ) Δ ( )i i
j i

ij ij j
(7)

∑+ − = −
≠

S t t S t r t C S t( Δ ) ( ) Δ ( ) .j j
j i

ij ij j
(8)
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