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A B S T R A C T

Micromechanical analysis of woven composites can be effectively carried out using variational asymptotic
method (VAM) unit cell homogenization technique. The governing equations obtained by adopting this tech-
nique can be solved using numerical methods by conformal discretization of the domain. In the case of woven
composites conformal discretization of the domain becomes difficult and time consuming. It is preferable to have
a non-conformal discretization procedure for problems involving complex geometries like woven composites. A
novel numerical framework for micromechanical analysis of woven composites based on VAM is proposed,
where level-set method is used to define the interface as well as to decompose the domain into voxel regions of
inclusions and matrix. Point interpolation method (PIM) is used to connect these voxel regions. The PIM-VOXEL
framework thus developed is validated using examples having complex geometries taken from open literature for
predicting elastic, thermal, thermo-elastic and visco-elastic properties. The proposed methodology alleviates the
requirement for conformal meshing without compromising the accuracy and is capable of automation for
homogenization and localization applications.

1. Introduction

The development of advanced materials play a crucial role in the
advancement of technology. In the recent past a lot of scientific effort
has been directed towards the development of new structural materials
with desirable macro-level properties. These macro-level properties are
a result of judicious mix of constituents, each having a different set of
desirable properties at the micro-level. Here composite materials using
textile preforms need special mention. These composites are generated
by repeated/cyclic mechanical operation (weaving, braiding, stitching
etc.); heterogeneous materials thus formed are periodic in nature.

Efficient design/simulation of structures made of heterogeneous
materials requires characterization of these materials. The possibility of
large set of heterogeneous material configurations that can be con-
ceived make it prohibitive to carry out experimental characterization
for each and every material. This challenge can be overcome by de-
veloping computational techniques based on the micromechanics of
periodic heterogeneous materials for the determination of their effec-
tive properties. Such techniques should lend themselves for homo-
genization to predict macro-level properties and localization to de-
termine local fields useful in material or structural failure analysis.

In general, homogenization of textile composites has been at-
tempted using analytical [1] and numerical methods [2–5]. Numerical
methods are predominantly based on finite element method (FEM), see
[4,5]. These methods require refined conformal meshing of the unit
cells to accurately predict the local stress and strain fields. For complex
material architectures this becomes very time consuming. In [3] this is
overcome by adopting a voxel based technique to automate the grid
generation process. Voxel based technique has also been used to predict
thermo-elastic properties in [4]. However, a series of finite element
analyses (FEAs) were required to find the response of the cell to normal
and shear strains and uniform temperature changes. Most of the
methods mentioned above have been extended to predict coupled
physical properties, however the models based on variational principles
are noteworthy. Variational asymptotic method unit cell homogeniza-
tion (VAMUCH) technique was used in [6–8] to predict the effective
thermo-elastic, electromagnetoelastic and piezoelectric properties re-
spectively. Here, the periodicity was considered as a small parameter
and was used in expanding the energy functional asymptotically to
obtain a variational statement for the unit cell. The minimization of this
statement yielded the required governing equation and boundary con-
ditions. The numerical implementation was done using FEM. VAMUCH
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has been successfully used to homogenize a wide class of heterogeneous
materials. VAMUCH provides an efficient analytical tool to determine
the properties by homogenization of a Repeating Unit Cell (RUC) of the
composite material. When compared to FEM based methods, VAMUCH
does not require loading of the RUC to determine the effective property
and thus is highly efficient. FEM based implementation of VAMUCH
requires conformal mesh where the element boundaries define the in-
terface. Conformal meshing becomes difficult for complex geometries
and hence there is a need for other numerical techniques to overcome
this problem.

Automated meshing/analysis procedure can be developed based on
non-conformal meshing techniques. In [9,10] VAMUCH based on XFEM
framework is presented. The X-FEM/VAMUCH approach is applied
successfully to many 2D examples reported in the VAMUCH literature.
Numerical experiments on the homogenization of complex unit cells
demonstrate the accuracy and simplicity of the XFEM/VAMUCH ap-
proach. The XFEM allows the use of meshes that are not necessarily
matching the physical surface of the problem while retaining the ac-
curacy of the classical finite element approach. For material interfaces,
this is achieved by introducing Moës enrichment strategy[11]. In ad-
dition to the advantages of VAMUCH, XFEM reduces the meshing effort
and allows for fully automated modeling of complex composite mate-
rials. A very thorough review of XFEM can be found in [12–14]; these
articles present an overview of XFEM highlighting the methodological
issues/solutions in its application. The enriched elements in XFEM
techniques will have extra degrees of freedom (DOF) along with the
regular DOF leading to large system matrix size. It becomes computa-
tionally expensive when used for 3D textile composites as the number
of enriched elements grow with complex geometry. Unlike the standard
XFEM, in [15] no additional unknowns are introduced at the nodes
whose supports are crossed by discontinuities. An improved XFEM
(iXFEM) has been developed in [16], where the extra DOF are not re-
quired for crack tip enrichment.

In most of the non-conformal methods, a level-set method is utilized
to describe the geometry of the interfaces within a unit cell. This
method of representing geometry with level-set is well established in
XFEM, viz. [11] uses level-set to represent complex microstructure
geometry. Similarly in [17], a level-set tool is developed to describe/
generate geometry of textile reinforced composite. A methodology to
model arbitrary holes and material interfaces using level-set has been
proposed in [18]. The level-set method has also been used to represent
the crack location, including the location of crack tips in [19]. In [20] a
method for uncoupling geometrical description and approximation with
the X-FEM was proposed. It is based on an uniform coarse mesh that
defines a higher order approximation of the mechanical fields and an
adapted mesh that defines the geometrical features by means of level-
sets. In [21], a level-set method for the growth of non-planar three-
dimensional cracks is presented.The crack is defined by two orthogonal
level-sets whose intersection represents the crack front.

The authors in their previous work [22–25] have attempted to
couple together the efficiency of VAMUCH and the advantage of vox-
elized geometry based discretization to develop a voxelized-VAM
(VOXEL), which enables the usage of a highly efficient VAM on complex
geometry, where conformal meshing is difficult. This framework proved
to be highly efficient in the homogenization of complex geometry;
however, it failed to give satisfactory result during the localization
procedure.

In this paper, a level-set method is utilized to describe the geometry
of the interfaces within a unit cell which is also used to obtain the fiber
direction and normal at the interface of different phases. The voxelized-
VAM is improved by incorporating meshfree point interpolation
method (PIM)[26] in the voxels cut by the interface. Nodes are added at
the interface determined by the level-set intersections with element
edges and PIM is used to interpolate the field variable within the ele-
ments cut by interface. Even though most of the meshfree methods use
approximants, PIM is a interpolant and has Dirac delta property that

makes applying boundary conditions straight forward. The Dirac delta
property of PIM makes the assembly of finite elements and PIM straight
forward. This approach enables the non-conforming mesh to represent
the inclusions in an appropriate manner and with reduced number of
DOF when compared to XFEM.

The variational statement of the energy functional was solved fol-
lowing the methodology presented in [8] to determine the effective
properties and to obtain the relation between local and global fields.
Further, due to the variational structure of the problem the periodic
boundary conditions were naturally obtained during the minimization
process. Subsequently, PIM is used in conjunction with FEM in a non-
conforming mesh to interpolate the fluctuating function.

Next section describes the level-set method, which is used to de-
scribe the geometry of fiber yarns inside the RUC, which is followed by
a section on the decomposition of the RUC into PIM and FEM Zones,
which forms the basic framework for the method proposed. Following
the steps described in [27,6,28,29], the governing equations for the unit
cell are derived in the next section. The proposed method is demon-
strated by applying it on 2D as well as 3D problems available in lit-
erature [30] and the results are compared both for homogenization as
well as the localization of the problems. Example problem to homo-
genize visco-elastic properties of woven composite is taken from [31];
for thermo-elastic properties, the experimentally tested woven compo-
site from [32] is considered.

2. Description of the complex geometry using level-set function

The level-set function is defined as a signed distance function with
respect to the yarn geometry, where the zero level-set represents the
interface, negative level-set represents the inside of the yarn and the
positive level-set represents the matrix phase. A typical level-set de-
scription of a reduced RUC for woven composite is shown in Fig. 1. In
the present work, the complex fiber bundle architecture for each yarn is
represented using level-set function. The elements which are crossed by
zero level-set are chosen and decomposition of only that element into
meshfree zone is done. The next section describes the procedure of
decomposing the RUC into meshfree PIM zone and FEM zone.

3. Decomposition of RUC into PIM and FEM zone

A typical process of decomposition of RUC into PIM and FEM zone
using level-set is depicted schematically in Fig. 2. In Fig. 2(a), ϕ is the
interpolated nodal level-set value representing the inclusion, where

=ϕ 0 is the interface depicted as Γ. All the elements whose nodes have
>ϕ 0 or <ϕ 0 are FEM zones – see Fig. 2(b). For all the elements which

are crossed by =ϕ 0, new nodes are added at the intersection of ele-
ment edges with =ϕ 0. The element crossed by =ϕ 0 is removed and
two PIM zones (+ and −) are formed. The shape function used for the
field interpolation is derived from FEM in the FE zones, where as in the
PIM zone it is derived from the meshfree PIM. The two set of nodes, one
having positive level-set value and the other having negative level-set
value are used to construct the meshfree shape function in the two PIM
zones (+ and -). It may be noted that the new nodes which have zero
level-set value are included in both zones.

Subsequent to the decomposition of RUC into PIM and FEM zones,
the field variables are interpolated in the PIM zone using the PIM shape
functions. The process of deriving the meshfree shape function using
PIM is based on [26]. Consider a domain Ω (either + or −) that is
discretized using n nodes, for an arbitrary quadrature point xQ. The
function u x( ) is interpolated using the nodes in the domain as,
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where, xp( ) is a polynomial basis. For a general 3D domain we have
considered
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