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A B S T R A C T

In this work the problem of thermoelasticity in composite, made of two different materials non-periodically
distributed as microlaminas along one direction, is considered. The macroscopic properties of this composite are
changing continuously along direction perpendicular to the laminas. In this note three models are presented: the
tolerance and the asymptotic-tolerance model, taking into account the effect of the microstructure size and the
asymptotic model, which equations omit this effect. To solve the equations of these three models, obtained by
using the tolerance averaging technique, the finite difference method was used. Then the results obtained by the
tolerance modelling were verified with the finite element method.

1. Introduction

The problem under consideration is a thermoelasticity issue in la-
minate, made of two different materials. These materials are non-per-
iodically distributed as microlaminas along one direction, what is
shown in Fig. 1. The macroscopic properties of this structure are
changing continuously along direction x1 – perpendicular to the la-
minas and this type of composites can be called the functionally graded
laminates, cf. [1]. The thickness of the cells (the microstructure para-
meter) is constant and denoted by λ.

Thermoelastic phenomenon can be considered in relation to mi-
cromechanical models with idealized geometry, because the basic cell
in reference to these laminates cannot be defined in a simple way. To
analyse the various issues related to the functionally graded laminates,
the assumptions of idealization similar to these used to analyse mac-
roscopically homogeneous composites, can be applied. Between the
methods, which are used for the periodic composites and can be
adopted to describe the overall behaviour of the functionally graded
laminates, the asymptotic homogenization and the homogenization
based on the microlocal parameters, should be mentioned, cf. [2,3].
Moreover there are alternative methods, among other the higher order
theory, cf. [4], which can be modified to describe this type of struc-
tures, but most of these methods do not take into account the effect of
the microstructure size in analysed issues.

In order to obtain the averaged equations taking into account the
effect of the microstructure size, the tolerance averaging technique was
used, cf. [5], which give us the possibility to take into account this
impact. This technique was used in many publications to consider

various problems of thermoelasticity for composites with periodic
structures, cf. [6–8] and for functionally graded laminates, cf. [9–11].
Furthermore the tolerance modelling was used among others to resolve
thermal issues in a two-phase hollow cylinder, cf. [12,13], vibrations of
periodic three-layered plates, cf. [14], dynamic problems for thin mi-
crostructured transversally graded shells, cf. [15], nonlinear vibrations
of slender meso-periodic beams, cf. [16] and free vibration frequencies
of thin functionally graded plates with one-directional microstructure,
cf. [17]. In the analysis of various issues related to the composites and
layered structures also the alternative methods can be used, for example
the finite element method to analyse the elastic buckling of a sandwich
beam, cf. [18], stability of three-layered annular plate, cf. [19], dy-
namic response control of layered plate, cf. [20] and stability of the
sandwich band plate, cf. [21] or mathematical and numerical modelling
for dynamic stability of sandwich beam, cf. [22], theoretical solutions
to a problem of elastic three point-bending of a sandwich beam, cf.
[23], strong form collocation method for solving laminated composite
plates, cf. [24], generalized differential quadrature (GDQ) as numerical
tool to analyse the laminated doubly-curved shells, cf. [25], layerwise
theory and a differential quadrature finite element method in the
analysis of composite plates, cf. [26] and modified couple stress theory
to study free vibration of a Timoshenko functionally graded beam, cf.
[27].

The basic aim of the application of the tolerance averaging tech-
nique is to replace the system of the differential equations with func-
tional, highly-oscillating, tolerance-periodic and non-continuous coef-
ficients, by equations with slowly-varying coefficients.

The main aim of this note is to obtain and present the equations of
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three models for functionally graded laminates: the tolerance, the
asymptotic-tolerance and the asymptotic model. The equations of these
three models can be applied in the analysis of some specific cases,
where the distribution of the ingredients is functional but non-periodic.

2. Modelling foundations

Thermoelastic phenomena for functionally graded laminates can be
described by the known equations in the following form:

∂ ∂ − = ∂

∂ ∂ − = ∂

C u ρu b θ

k θ cρθ T b u

( ) ¨ ( ),

( ) ̇ ̇ ,
j ijkl l k i j ij
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where i, j, k, l=1, 2, 3, by ui and θ the unknown displacements along
the xi-axis and the unknown temperature are denoted, respectively and
the material coefficients (tensor of elasticity Cijkl, tensor of heat con-
duction kij, tensor of thermal modules bij, mass density ρ, specific heat c)
are non-continuous, highly-oscillating and tolerance-periodic.

The tolerance averaging technique is based on the many concepts
which are the averaging operation, tolerance-periodic, slowly-varying and
highly-oscillating functions, cf. [5]. The gradient of the function f(x) is
denoted by ∂if, where x ∊Ω, i=0, 1, 2 and Ω is a space limited area in
R. By Ω× Ξ the space limited area in R3 is denoted, where Ω is included
in R and Ξ is included in R2. The coordinates in Ω are denoted by x= x1
or z= z1 and coordinates in Ξ are denoted by ς=(ς1, ς2). The basic cell
is defined as Δ≡ [−λ/2, λ/2] and Δ(x)= x + Δ is a cell with the
centre in x ∊ R.

The averaging operator is defined by the following equation:

∫<∂ > ≡ ∼−f x f x z dz( ) |Δ| ( , ) ,i
x
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where i=0, 1, 2, x ∊Ω, z ∊ Δ(x) and a sign∼ is introduced to mark a
periodic approximation of the gradient ∂if in Δ(x).

The function f can be called the tolerance-periodic function in re-
ference to the basic cell Δ and tolerance parameter δ, when the fol-
lowing terms are fulfilled:
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where i accepts values 0, 1, 2 and H0(Δ) is a space of Δ-periodic func-
tions, which can be square integrable.

The function u can be called the slowly-varying function in reference
to the basic cell Δ and tolerance parameter δ, when the function u is a
tolerance-periodic function and the succeeding term is fulfilled:

∀ ∈ = ∂∼x u x u x( Ω)( ( ,·)| ( )),i
x

i( )
Δ( ) (4)

where i=0, 1, 2 and a periodic approximation of ∂iu(·) in an area of
Δ(x) for every x ∊ Ω is a constant function.

The function h can be called the highly-oscillating function in re-
ference to the basic cell Δ and tolerance parameter δ, if this function is a
tolerance periodic function and the following term is fulfilled:

∀ ∈ = ∂∼ ∼x h x h x( Ω)( ( ,·)| ( )),i
x

i( )
Δ( ) (5)

where i=0, 1, 2.

3. Modelling procedures

The tolerance averaging technique is based on some assumptions.
The main assumption of this technique is the micro-macro decomposition,
where the basic unknowns can be taken as sums of the averaged parts
and the oscillating parts, according to the following equations:
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= +
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On the other hand the oscillating part can be expressed as a product
of a known fluctuation shape functions and the fluctuation amplitudes,
which are the new basic unknowns. The basic unknowns in this case are
the displacements ui (i accepts values 1, 2, 3) and the temperature θ, the
new basic unknowns are the fluctuation amplitudes of the displace-
ments viA and the temperature ψB. Both the displacements, the tem-
perature and the fluctuation amplitudes are the slowly-varying functions
of the coordinate x1. By hA and gB the known fluctuation shape func-
tions of the displacements and the temperature, respectively, are de-
noted. The fluctuation shape functions have to be defined for each
analysed case. Basing on the available literature, cf. [28], concerning on
the thermal issues in functionally graded laminates, one fluctuation
shape function is assumed (A=1, B=1), expressed by the following
equation:
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where v1(x) and v2(x) define the share of the first and the second ma-
terial in the cell and describe the gradation of properties of the lami-
nate. This type of the fluctuation shape function guarantees the con-
tinuity of the displacements and the temperature between the layers
and between the sublayers.

The second assumption of the tolerance averaging technique is the
periodic approximation of kth derivatives of functions of the displace-
ments and the temperature, which can be defined using the following
equations:
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where z ∊ Δ(x), x ∊Ω.
To obtain the equations of the tolerance model, the orthogonaliza-

tion method is used. Following this method, the approximated functions
of the displacements are expanding in series relative to the linear-

Fig. 1. The cross-section of considered laminate: (a) microstructure, (b) macrostructure.
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