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A B S T R A C T

In this work, a coated ellipsoid assemblage model for the prediction of the effective thermal conductivity of
composites with imperfect interfaces is developed. Based on the Green’s function technique, the study proposes a
new formulation of the composite ellipsoid assemblage model with an imperfect interface between the inclusion
and the surrounding matrix. The solution of the integral equation is obtained thanks to the concept of interior-
and exterior-point Eshelby’s conduction tensors. Thereafter, the analytical expressions of the heat intensity and
the effective thermal conductivity are proposed for ellipsoidal inclusion and anisotropic thermal conductivity per
local phase. In order to test the relevance of the model, its predictions have been compared with the exact
solutions of spherical and cylindrical inclusion. Moreover, the capability of the model to well describe the
thermal behaviour of composites with high volume fractions of inclusions has been tested through some com-
parisons with numerical results proposed in the literature. A parametric study is then conducted to analyse the
effects of the morphology and the volume fraction of the inclusion, the interface thermal resistance and contrast
of thermal conductivity of local phases, on the predictions of the developed model.

1. Introduction

During the last decades, the use of composite materials became
more widespread in industrial sectors such as aeronautics, automotive,
transport electronics, etc. The main advantage of this kind of materials
is their ability to adapt their properties to specific applications. The
resulting properties of the composite strongly depend on the micro-
structure and the properties of its constituents. The composites consist
of one or more discontinuous phases (inclusions) dispersed in a con-
tinuous phase (matrix). The prediction of the properties of these het-
erogeneous materials is of great interest for the design of new compo-
sites.

In the field of transfer phenomena in heterogeneous materials, the
thermal conductivity analysis is of great interest in the design of new
composites in modern engineering applications such as electronic
packaging, thermal insulation, etc. The optimization of the thermal
conductivity is a key step in the design and development of these
composites. The homogenization methods based on multi-scale mod-
eling are tailoring tools for the determination of the effective properties
of the composite from the morphology, the volume fraction, the or-
ientations and the properties of each local phase. The interfaces be-
tween the constituents play a key role during the transfer phenomena

such as the thermal conductivity, electrical conductivity, diffusivity,
permeability, etc. The modeling of thermal conductivity of composite
materials has been widely studied and reported in the literature. Most
of these approaches are conducted under the main assumption of per-
fect interfaces between local constituents of the composite. However, in
some situations these interfaces are imperfect due to the poor chemical
adhesion, the presence of a relative roughness and a difference of the
thermal expansion between the local phases. These imperfections can
induce an interfacial thermal resistance that results in a jump of the
temperature field at the interfaces and greatly affects the thermal
transfer in the composite. According to the Kapitza interfacial thermal
resistance model [1], this temperature jump is assumed proportional to
the normal component of the heat flux. Some investigations have been
devoted to the determination of the effective conductivity of hetero-
geneous materials with imperfect interfaces. Developed within the
framework of the mean fields homogenization methods, these initial
studies reported in the literature can be classified into three categories.

The first class of models results from the solution of the problem of
the Eshelby’s inclusion embedded in an infinite matrix. This solution
was initially developed in elasticity by Eshelby [2] and then re-
formulated in thermal conductivity by Hatta and Taya [3–4] and in the
presence of an interfacial thermal resistance between the inclusions and
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the matrix by Le Quang et al. [5] and Bonfoh et al. [6]. However, these
models appear not relevant in the case of voids, high volume fractions
and rigid inclusions [7].

The second class of models is based on the concept of inclusion
surrounded by a matrix called ‘coated inclusion’ or ‘composite inclu-
sion’. Two approaches have been then developed within this second
class. The first one deals with the composite sphere assemblage (CSA)
that considers two concentric spheres [8]. The second one is related to
the generalized self-consistent (GSC) approach initially suggested by
Christensen and Lo [9]; Christensen [10]. In [9–10], the analysis
showed that these models based on the concept of coated inclusion
provide results in good agreement with numerical simulations and ex-
perimental data of effective properties, even for moderated volume
fractions and for rigid inclusions. In the case of the thermal con-
ductivity, the initial investigation dealing with the modeling of the
effective thermal conductivity of heterogeneous materials is based on
the well-known work of Maxwell [11] and Rayleigh [12]. These authors
provide the solution of the Laplace’s equation describing the heat
transfer in the case of an isotropic thermal conductivity per phase.
Maxwell [11] suggested an approach to model the thermal conductivity
of a composite with small concentration of spherical inclusions. Hashin
and Shtrikman [13] proposed the famous lower and upper bounds of
the thermal conductivity of a macroscopically isotropic two-phase
material. In this context, Hashin [14] determined the thermal con-
ductivity of an isotropic two-phase material in the framework of the
generalized self-consistent scheme (GSCS). These models were devel-
oped under the hypothesis of a perfect interface between the con-
stituents of the composite. Hasselman and Johnson [15] modified the
approach suggested by Maxwell [11] and Rayleigh [12] to account for
the interfacial thermal resistance for composites containing spherical or
cylindrical inclusions. In the case of ellipsoidal inclusions, the solution
of the Laplace’s equation can be expressed in terms of ellipsoidal har-
monic functions and through the theory of potentials defined in ellip-
soidal coordinates by Kellog [16].

The CSA model has been extended to ellipsoidal inclusions through
the composite ellipsoids assemblage (CEA). Dealing with thermal con-
ductivity behavior, Hatta and Taya [17] suggested the solution of the
problem of coated spheroidal inclusion embedded in an infinite matrix.
By considering non-dilute concentrations of ellipsoidal voids or inclu-
sions, Benveniste and Miloh [18]; Miloh and Benveniste [19] proposed
the exact solution based on the CEA model. Giordano [20] then adapted
the solution of coated inclusion for the modeling of the non-linear be-
havior of three phases composite with coated inclusions. Thanks to a
linear transformation of Cartesian coordinates, Milton [21] provided
the exact expressions of the effective conductivity of the CEA model in
the case of anisotropic thermal conductivity.

The third type of models deals with the concept of an interphase
located between the inclusion and the matrix. Then, the models of
imperfect interfaces are deduced when the thickness of the interphase
tends asymptotically to zero and its conductivity to infinity for highly
conducting interfaces. The weakly conducting interfaces case is also
deduced from the interphase problem by tending both the thickness and
the conductivity of the interphase to zero [22–26].

To our knowledge, the application of the CEA model to imperfect
interfaces between the constituents of a composite is not reported in the
literature. The analytical modeling of the thermal conductivity of the
composite inclusion in the presence of an imperfect interface sur-
rounding the ellipsoid remains new challenge in the field of homo-
genization of composites.

The present study proposes a composite ellipsoid assemblage model
with imperfect interface in order to provide an accurate model for
composite with ellipsoidal inclusion and anisotropic thermal con-
ductivity per phase. Unlike models providing the solution the Laplace’s
equation in terms of ellipsoidal harmonics, we propose a new micro-
mechanical formulation of the CEA model based on the Green’s function
technique and the integral equation. The obtained integral relation

displays a surface integral related to the temperature jump at the im-
perfect interface. The exact calculation of this surface integral is diffi-
cult. Thus, in the present model the local heat flux on this imperfect
interface is approximated by its volume average inside the corre-
sponding inclusion.

The manuscript is organized as following: the Section 2 is devoted to
the description of the micromechanical approach proposed for the
problem of heterogeneous anisotropic material containing ellipsoidal
inclusions with an interfacial thermal resistance. Afterwards, the ob-
tained localization equation enables to determine the effective thermal
conductivity of the composite in Section 3. In Section 4, some com-
parisons with results of previous investigations within both isotropic
and anisotropic configurations are then performed in order to examine
the relevance of the elaborated approach. Finally, the aspect ratio, the
volume fraction of inclusions, the local contrast of thermal con-
ductivities, the anisotropy of matrix’s phase and the interface para-
meter, dependent effective conductivity of reinforced composites are
investigated and discussed in details.

2. Micromechanical modeling

We consider a representative volume element (RVE) with volume V
of the composite that consists of ellipsoidal inclusions embedded in a
homogeneous matrix. Let q r( ), e r( ) and rT ( ), denote respectively the
heat flux, the intensity and the temperature fields at the vector position
r x x x( , , )1 2 3 in the RVE. The thermal behavior of the composite is as-
sumed linear and described by its local thermal conductivity tensor
k r( ). The RVE is subjected to a homogeneous intensity field e0 at its
boundary ∂V . The present study deals with the determination of the
intensity field e r( ) and the heat flux q r( ) as well as the prediction of the
effective thermal conductivity of the composite.

2.1. Basic equations

Under steady-state conditions and in absence of internal thermal
source, the field equations of the heterogeneous thermal conductivity
problem read:

• the linear thermal behavior described by Fourier’s law

=q r k r e r( ) ( ). ( ) (1)

• the energy conservation equation

=div q r( ) 0 (2)

• the intensity field

= −e r rT( ) ( ) (3)

• the boundary conditions

= − ∈ ∂r e r rT for V( ) .0 (4)

Within the present study, the interfaces S between the inclusions
and the matrix are assumed imperfect so that:

= − ≠
= − = ∈

+ −

+ −
r r r

q r n q r q r n r
T T T

S
[ ( )] ( ) ( ) 0
[ ( )]. ( ( ) ( )). 0 for (5)

where n is the unit vector normal to S oriented from −S to +S ; + rT ( ) and
+q r( ) (respectively − rT ( ) and −q r( )) are the fields defined on the face
+S (respectively −S ).

2.2. Integral equation for a heterogeneous finite medium

We consider a finite homogeneous reference medium (HRM) with
the thermal conductivity k0 so that the local thermal conductivity
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