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A B S T R A C T

Uncertainties in material properties caused by the small-scale length effect are serious for nanostructures, which
may affect their mechanical responses accordingly. This paper devotes to studying the effect of uncertain ma-
terial properties on wave propagation characteristics of magneto-electro-elastic nanobeams subjected to external
electric and magnetic fields. Based on the nonlocal Euler-Bernoulli beam theory, the governing differential
equations of motion are derived by using the Hamilton’s principle. Considering limited experimental data, un-
certain-but-bounded parameters are employed to quantify the uncertain material properties including elastic
constants, mass density, piezoelectric, piezomagnetic, dielectric, magnetoelectric and magnetic constants. A high
precision interval analysis method is presented to evaluate the upper and lower bounds of the wave dispersion
curves. Meanwhile, the presented method is validated with Monte-Carlo simulation, and its validation is also
demonstrated by comparing with probabilistic method. Numerical results suggest the effect of uncertainties in
material properties is significant in understanding the wave dispersion behaviors of magneto-electro-elastic
nanobeams. The presented method can serve as an effective tool to quantify the dynamic response of nano-
sensors and nanoactuators with uncertain material properties.

1. Introduction

Nanostructures have attracted a great deal of attention due to their
unique mechanical, electrical, thermal, and structural properties, which
enable them to be successfully used in many applications including
micro-electro-mechanical sensors, transistors, actuators, probes and
resonators [1]. Therefore, it is crucial to investigate the mechanical and
physical behaviors of nanostructures. Many studies have shown that the
small scale effect becomes significant in nanostructures and conse-
quently the classical theory cannot predict this size dependent behavior
efficiently [2]. There are two mainly methods i.e., atomistic and non-
classical continuum mechanic approaches, to study the small scale ef-
fect of nanostructures. Because the atomistic approach is computa-
tionally expensive and time consuming for large-scaled structures, the
non-classical continuum mechanic approaches are always the first
choice in many cases [3,4].

Several non-classical continuum mechanic approaches including the
nonlocal elasticity [5–14], strain gradient [15,16], modified strain
gradient [17–21], couple stress [22] and modified couple stress [23–25]
theories have been developed to describe the size effect of nanos-
tructures. The nonlocal elasticity theory is the most commonly used
approach, which was initially proposed by Eringen [5] and was

subsequently introduced to nano-materials by Peddieson et al. [26]. In
this theory, the small scale effect is captured by assuming the stress at
any location to be a function of the strain field at every point of the
whole body. Recently, the smart nanostructures are considered as the
promising candidates for the future nano-electro-mechanical systems
(NEMS) due to their excellent magneto-electro-elastic performances.
Especially, the magneto-electro-elastic nanobeam is widely used as an
elementary component in NEMS. Various nonlocal beam theories i.e.,
nonlocal Euler-Bernoulli beam, nonlocal Timoshenko beam and non-
local higher-order shear deformation theories are devoted to under-
standing the wave propagation, buckling and vibration behaviors of
such structures. For example, Arefi and Zenkour [27] applied the
nonlocal Timoshenko beam model for analyzing the wave propagation
properties of functionally graded magneto-electro-elastic nanobeams.
Ke et al. [28,29] investigated the wave propagation and vibration be-
haviors of magneto-electro-elastic nanobeams based on the nonlocal
Euler-Bernoulli and Timoshenko beam theories. Ebrahimi et al. [30–33]
used the nonlocal higher-order shear deformation theory to study the
static and dynamic responses of magneto-electro-elastic nanostructures.
Other related studies on magneto-electro-elastic nanostructures also
can be found in Refs. [34–36].

It also should be noted that most aforementioned studies are
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conducted under the assumption of deterministic material properties.
Due to the nano-scale effect of nanostructures, many factors like man-
ufacturing tolerances, physical imperfections, measurement errors,
model inaccuracies and system complexities are unavoidable and will
lead to serious uncertainties [37]. The material uncertainty at nano-
scale was reported by many researchers, for instance, Salvetat et al.
[38] measured the Young’s modulus and shear modulus of single-
walled carbon nanotubes (CNTs) by using the atomic force microscope
(AFM) and 50% of error was found in their measurement results. Wong
et al. [39] also adopted the AFM to measure the Young’s modulus of
CNTs and their results were distributed in the range of 1.28 ± 0.59
TPa. Employing the transmission electron microscope, Treacy et al.
[40] found the Young’s modulus of CNTs was in a wide range from 0.40
TPa to 4.15 TPa, while± 30% error was presented in the measurement
results of Enomoto et al. [41]. Following their experimental results, one
can find that the material properties of nanostructure should be de-
scribed as uncertain parameters.

Probabilistic analysis method (PAM) is one of the most popular
approaches for the uncertain problems of nanostructures, where the
probability density function (PDF) should be defined unambiguously
[42–44]. By using this method, Chang [45,46] suggested a stochastic
finite element method for nonlinear vibration problem of fluid-loaded
double-walled CNTs with random material parameters. Scarpa and
Adhikari [47] presented a stochastic reduced order model for solving
the natural frequencies of a single-walled CNT with random flexural
modulus, thickness and mass density. In their paper, because there was
no sufficient experimental data in the open literatures to evaluate the
accurate PDF of flexural modulus, an equivalent atomistic finite ele-
ment model was used to make that come true. To overcome the massive
experimental data needed in probabilistic model, the interval analysis
method (IAM) has aroused widely concern. This method only requires
the well-defined bounds of the uncertain parameters rather than en-
ough information about their PDF. The IAM is widely used in the
structural problems at macro-scales [48–52], while its application in
nanostructures is limited. In recent studies, Chen et al. [53] adopted an
interval homogenization-based method to evaluate the lower and upper
bounds of elastic properties of periodic microstructure. Radebe and
Adali [54,55] investigated the buckling problem of nanoplates with
uncertain-but-bounded material parameters.

The investigation on uncertain wave propagation is meaningful to
understand the dynamic behaviors of structures and it can provide
helpful guidelines for structural ultrasonic evaluation and health
monitoring. Hosseini and Shahabian [56] studied the wave propagation
in functionally graded materials with random uncertain constitutive
mechanical properties. Nguyen et al. [57] presented a probabilistic
framework for investigating ultrasonic wave reflection and transmis-
sion through an anisotropic elastic plate with uncertain material
properties. Liu et al. [58,59] studied the effects of uncertain material
properties on the transverse and longitudinal wave propagation in
CNTs. However, no detailed investigation has been reported in wave
propagation analysis of magneto-electro-elastic nanostructures with
material uncertainties.

This paper aims to set up a theoretical model to analyze the wave
dispersion characteristics of magneto-electro-elastic nanobeams with
uncertain material properties. The material parameters including
elastic constants, mass density, piezoelectric, piezomagnetic, dielectric,
magnetoelectric and magnetic constants are all regarded as uncertain-
but-bounded parameters. The upper and lower bounds of the wave
dispersion curves are investigated under different uncertain levels by
using the IAM. Also, the combined influences of the material un-
certainties, the small scale coefficient, as well as the external electric
and magnetic fields on the wave frequency and phase velocity are
discussed. Furthermore, the PAM and Monte Carlo simulation (MCS)
are presented to validate the proposed IAM.

2. Equation of wave propagation

2.1. Nonlocal elasticity

Because the structural dimension of the magneto-electro-elastic
nanobeam is comparable to its internal length scale, the size-dependent
effect is significant. Eringen’s nonlocal elasticity theory is widely
adopted to describe the size-dependent effect of nanobeams [5]. Ac-
cording to this theory, the basic equations for a nonlocal magneto-
electro-elastic solid can be expressed as

∫= − ′ ′ − ′ − ′ ′σ α x x τ c ε x e E x q H x V x(| |, )[ ( ) ( ) ( )]d ( )ij ijkl kl mij m nij n (1a)

∫= − ′ ′ + ′ + ′ ′D α x x τ e ε x s E x d H x V x(| |, )[ ( ) ( ) ( )]d ( )i ikl kl im m in n (1b)
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where σij, εij, ui are the components of stress, strain, and displacement of
the nanobeam, respectively; Di, Bi, Ei, Hi, are the components of electric
displacement, magnetic induction, elastic field and magnetic field, re-
spectively; cijkl, emij, qnij, sim, dij and χij denote tensors of elastic, piezo-
electric, piezomagnetic, dielectric permittivity, magnetoelectric and
magnetic permeability constants, respectively. ∼Φ and ∼Ψ are, respec-
tively, the electric and magnetic potentials; ρ is the mass density;

− ′α x x τ(| |, ) stands for the nonlocal modulus, which can be acted as an
attenuation function incorporating the Euclidean form distance − ′x x| |
and the scale coefficient τ. Here, the coefficient τ is expressed as
τ= e0a/l, where e0 is a constant determined by comparing the plane
wave dispersion curves with those obtained from the atomistic lattice
dynamics; a and l are, respectively, the internal and external char-
acteristic lengths which are related to the lattice parameter, granular
size, crack length and wavelength of the nanostructure.

In most engineering applications, the integral form of constitutive
relations is difficult to solve analytically. Thus, an equivalent differ-
ential form of the nonlocal elasticity constitutive (1) can be approxi-
mated as

− ∇ = − −e a σ c ε e E q H[1 ( ) ] ij ijkl kl mij m nij n0
2 2

(2a)

− ∇ = + +e a D e ε s E d H[1 ( ) ] i ikl kl im m in n0
2 2 (2b)

− ∇ = + +e a B q ε d E χ H[1 ( ) ] i ikl kl im m in n0
2 2 (2c)

where ∇2 denotes the Laplace operator and e0a represents the scale
coefficient of nanostructures. For one dimensional Euler-Bernoulli na-
nobeam, Eq. (2) can be rewritten as the following form
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where ̃cij, ̃eij, ∼qij, ̃sij,
∼dij and ∼χij stand for the reduced constants of na-

nobeam under the plane stress state, which can be separately expressed
as follows

H. Liu, Z. Lv Composite Structures xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/8959957

Download Persian Version:

https://daneshyari.com/article/8959957

Daneshyari.com

https://daneshyari.com/en/article/8959957
https://daneshyari.com/article/8959957
https://daneshyari.com

