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a b s t r a c t 

As a famous linear manifold learning method, orthogonal neighborhood preserving projections (ONPP) is 

able to provide a set of orthogonal projections for dimensionality reduction. However, a problem of ONPP 

is that it takes the L 2 -norm as the basic measurement and therefore tends to be sensitive to the outliers 

or the variations of the data. Aiming at strengthening the robustness of the conventional method ONPP, 

in this paper, a robust and sparse dimensionality reduction method based on linear reconstruction, called 

Robust Jointly Sparse Embedding (RJSE), is proposed by introducing L 2, 1 -norm as the basic measurement 

and regularization term. We design a simple iterative algorithm to obtain the optimal solution of the 

proposed robust and sparse dimensionality reduction model. Experiments on four benchmark data sets 

demonstrate the competitive performance of the proposed method compared with the state-of-the-art 

methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Dimensionality reduction is a well-known data processing tech- 

nique that can simultaneously reduce the redundant information 

and preserve important information from the high-dimensional 

data. The conventional dimensionality reduction methods including 

principal component analysis (PCA) [1] , linear discriminant anal- 

ysis (LDA) [2–5] and sparse discriminant analysis (SDA) [6] . Un- 

like these methods, the non-linear manifold learning method, lo- 

cally linear embedding (LLE) [7,8] can preserve the local geometry 

structure of the data set . The related techniques have been well 

studied in the fields of data mining and pattern recognition. To 

preserve the local geometry structure of the data with an explicit 

linear mapping, the linearization of the LLE and the other mani- 

fold learning methods were developed, among which the orthogo- 

nal neighborhood preserving projections (ONPP) [9] was one of the 

most well-known methods. ONPP is a linear approximation to the 

nonlinear method LLE. This scheme allows ONPP to preserve the 

manifold structure in a linear subspace. In [10] , the authors pro- 

posed the sparse extension of ONPP. In [11,12] , the authors further 

extended ONPP to process tensor data. What is more, [13] com- 

bined the supervised learning and manifold learning together for 

dimensionality reduction. Since these manifold learning methods 

showed promising performance in pattern recognition, they have 

been widely used in face recognition [14–16] , disease classification 
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[17] , finger vein recognition [18] , financial data analysis [19] , clus- 

tering [20,21] and human age estimation [22] . 

However, the traditional manifold learning methods still have 

some drawbacks. First, these methods use the L 2 -norm as mea- 

surement, which are sensitive to the outliers of data. Second, 

these methods lack the function of sparse feature selection for 

obtaining more reliable low-dimensional features. An effective way 

to enhance the robustness is to introduce an L 2, 1 -norm as the 

measurement instead of the L 2 -norm in the traditional manifold 

learning methods. The L 2, 1 -norm metric has been a popular 

technique in recent years because of its competitive robustness 

to the outliers compared with the L 2 -norm. Since the square 

operation does not need to be performed during the optimization 

of the L 2, 1 -nom-based model, the noise or reconstructive error 

will not be over-emphasized, which reduces the sensitiveness of 

the model. Therefore, many L 2, 1 -norm-based methods were pro- 

posed for improving the model’s robustness including the robust 

feature selection [23–25] , the robust PCA [26,27] and the robust 

classification [28] . In addition, the usage of the L 2, 1 -norm regu- 

larization is an effective way to obtain joint sparsity to improve 

the classification performance. In recent years, sparse learning has 

become more and more popular [29–33] . The so-called sparsity 

is to generate a sparse representation matrix or projection matrix 

so that most of the elements of the matrix become zero, thereby 

the main features of the images are emphasized and the feature 

extraction results are more explanatory. 

In summary, the conventional methods, i.e., PCA, LDA and their 

extensions ignore the local geometry structure of the data set . 

And the manifold learning methods such as LLE and ONPP lack 
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of robustness or do not obtain joint sparsity for discriminative 

feature selection. Therefore, in this paper, we propose a robust and 

sparse subspace learning method by utilizing the L 2, 1 -norm as 

main metric and the regularization term to consider the local ge- 

ometry structure information for robust sparse subspace learning. 

The proposed L 2, 1 -norm based model can be solved by a simple 

iterative algorithm. 

The contributions of this paper are stated as follows: 

(1) We construct a robust regression model based on ONPP and 

prove that the optimal solution space of the model is the 

same as the solution of ONPP in some special cases. 

(2) By adding the L 2, 1 -norm as the regularization term, the joint 

sparsity can be easily obtained so as to improve the perfor- 

mance of feature selection. The proposed L 2, 1 -norm based 

model is proved to be more robust than other L 1 -norm or 

L 2 -norm based methods on four benchmark data sets. 

(3) We provide the convergence proof of the proposed iterative 

algorithm. Extensive experimental results with figures and 

tables illustrate the effectiveness of our method. 

The rest of the paper consists of five sections. In Section 2 , we 

will introduce some notations used in this paper and then review 

LLE and its linear extension ONPP. In Section 3 we will introduce 

the regression form of ONPP. In addition, a robust and sparse sub- 

space learning method, including the designed iterative algorithm 

and its convergence proof will be introduced in Section 4 . Experi- 

mental results on four different data sets will be shown in Section 

5 . Section 6 summaries the paper. 

2. Related work 

In this section, we first introduce the notations and definitions 

used in this paper. Then we will review the non-linear manifold 

learning method LLE and the linearization one, i.e., ONPP. 

2.1. Notations and definition of L 2, 1 -norm 

We first introduce some notations used in this paper. All ma- 

trices are represented by the uppercase like X and Y . Vectors are 

represented by the lowercase like a and p . In this paper, for data 

matrix X ∈ R m × n , m denotes the dimensionality of data points and 

n denotes the number of data points. Besides, d is the desired di- 

mensionality of the low-dimensional feature vectors. 

The L 2, 1 -norm plays an important role in jointly sparse feature 

selection. For a general matrix X, x i and x j denote its i th row and 

j th column, respectively. 

The L 2, 1 -norm of matrix X is defined as 

‖ 

X ‖ 2 , 1 = 

m ∑ 

i =1 

√ 

n ∑ 

j=1 

X 

2 
i j 

= 

m ∑ 

i =1 

∥∥x i 
∥∥

2 

where X 
i j 

denotes the element in the i th row and j th column of X . 

The L 2, 1 -norm meets the three requirements of valid norm [23] . 

2.2. Locally linear embedding 

LLE algorithm supposes every data points can be reconstructed 

by its neighbors and is divided into three steps. First, find out the 

k nearest neighbor points of x i based on the Euclidean distance. 

Second, compute the weight matrix W from the k nearest neighbor 

points. The optimization problem is as follow. 

min 

W 

∑ 

i 

∥∥∥x i −
∑ 

j∈ C k ( x i ) 
W i j x j 

∥∥∥2 

s . t . 
∑ 

j∈ C k ( x i ) 
W i j = 1 (1) 

where W ij is the weight coefficient and C k ( x i ) is index set of the k 

nearest neighbor points of x i . 

Third, all the sample points x i are projected to a low- 

dimensional space Y = [ y 1 , y 2 , . . . y n ] . The optimization problem is 

as follow. 

min 

Y 

∑ 

i 

∥∥∥y i −
∑ 

j∈ C k ( x i ) 
W i j y j 

∥∥∥2 

s . t . Y T Y = I (2) 

where I is identity matrix. Finally, the optimal solution of ( 2 ) is 

provided by the following eigenfunction. 

( I − W ) 
T 
( I − W ) y = λy (3) 

The solution spaces of LLE are the eigenvectors according to the 

first d minimal eigenvalues λ [34] . 

2.3. Orthogonal neighborhood preserving projections 

ONPP is the linearization of LLE. It adds a linear projection 

p ∈ R m based on LLE. After dimensionality reduction by linear pro- 

jection, the sample point and its neighboring points have the min- 

imum reconstruction error. Therefore, ONPP aims to solve the fol- 

lowing optimization problem: 

min 

p 

∑ 

i 

∥∥∥p T x i −
∑ 

j∈ C k ( x i ) 
W i j p 

T x j 

∥∥∥2 

s . t . p T p = 1 (4) 

Similar to LLE, problem ( 4 ) can be transformed into an eigen- 

value problem. 

X ( I − W ) 
T 
( I − W ) X 

T p = 

˜ λp (5) 

Then the solutions of P = [ p 1 , p 2 , . . . p d ] are the eigenvectors 

corresponding to the d minimal eigenvalues ˜ λ [34] . 

3. L 2, 1 -norm based regression model 

In this section, we propose a L 2, 1 -norm based regression model 

for linear reconstruction which is easy to be solved for obtaining 

the optimal solution. What’s more, we discuss the connection be- 

tween the proposed model and traditional ONPP. 

3.1. Robust regression model 

In order to increase the robustness of ONPP, we use L 2, 1 -norm 

as the measurement of the loss function. Besides, different from 

ONPP which minimizes the information loss in low-dimensional 

feature spaces, we aim to reduce the reconstruction error of dif- 

ferent neighbors. We have the following model by using L 2, 1 -norm 

for increasing the robustness. 

min 

a 

∥∥M X 

T a a T − M X 

T 
∥∥

2 , 1 
s . t . a T a = 1 (6) 

where a ∈ R m is the projection and M = ( I − W ) . For the optimiza- 

tion problem ( 6 ), we have the following Theorem 1 . 

Theorem 1. The optimization problem ( 6 ) derives the same solution 

spaces as the one of ONPP if the diagonal elements of matrix D de- 

rived by the L 2, 1 -norm optimization problem are the same nonzero 

constant . 

Proof. We use an iteratively reweight algorithm to solve the L 2, 1 - 

norm based model as in [23] . From ( 6 ), we can derive ∥∥M X 

T a a T − M X 

T 
∥∥

2 , 1 

= tr 

[ (
M X 

T a a T − M X 

T 
)T 

D 

(
M X 

T a a T − M X 

T 
)] 

= tr 
[
a T X M 

T DM X 

T a − a T X M 

T DM X 

T a − a T X M 

T DM X 

T a 

+ X M 

T DM X 

T 
]

(7) 

where D is a diagonal matrix and defined as 

D ii = 

1 

2 

∥∥h 

i 
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2 

(8) 
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