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a b s t r a c t 

Impulsive systems describe processes with at least one state variable is impulsively changeable. The de- 

sign of optimal control policies in impulsive systems is a complex task. In order to relax the solution 

for the Hamilton-Jacobi-Bellman equation, a meaningful cost functional can be proposed a posteriori in 

the inverse optimal problem. The main contribution of this paper is a neural inverse optimal control 

for discrete-time impulsive systems. Control policies for discrete-time impulsive systems are derived by 

combining inverse optimal control into a recurrent high order neural network (RHONN) trained with the 

Extended Kalman filter (EKF). The neural network avoids the development of a mathematical model to 

represent the studied system. For illustration, we apply the proposed neurocontrol to personalized drug 

treatment in influenza infection disease, whose nonlinear model is included and described for complete- 

ness. The robustness of the proposed framework is tested through Monte Carlo simulations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Recurrent neural networks are a well-established methodology 

that allows solving difficult problems such as identification and 

control of complex systems [1] . As a result, the use of recurrent 

neural networks (RNNs) for modeling and learning has rapidly in- 

creased in recent years [1–3] . These networks allow the identifica- 

tion of dynamical systems in form of high dimensional nonlinear 

state space models [1] . In addition, new training algorithms such 

as those based on the extended Kalman filter have been raising 

due to different properties. Some of these features are important 

to improve technical issues related to local minima, slow learn- 

ing rate, high sensitivity to initial conditions, among others [4,5] . 

Therefore, the Extended Kalman filter (EKF) is an important learn- 

ing tool to train neural networks [4] . 

Recurrent high order neural networks (RHONNs) schemes 

present many convenient features for modeling and control of non- 

linear systems [6,7] . For instance, these networks trained with the 

EKF allow to reduce the epoch size and the number of required 

neurons [4,8] . Discrete-time RHONNs present more interactions 

among the neurons, the network design is flexible and allow the 

incorporation of previous information about the system structure 

into the RHONN model [9,10] . In addition, the discrete-time neu- 

ral networks are better fitted for real-time implementations [11] . 
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These features favor forming a discrete-time representation of dy- 

namical systems [10] . 

In recent years, there exists a trend towards discrete-time con- 

trol rather than analog control of dynamic systems. This tendency 

is mainly due to the advantages of working with digital instead of 

continuous-time signals [9] . A controller based on a plant model 

may not perform as desired because of uncertain parameters or 

unmodeled dynamics as well as internal and external disturbances 

[8] . A way to solve these issues is on the basis of a black/gray box 

approach such as RHONNs, which allow identifying the dynamics 

of the plant to be controlled. Once the weights of the network are 

adapted, the RHONN model dynamics are similar to the real sys- 

tem dynamics, even in presence of disturbances. As a result, a con- 

troller based on a RHONN model may increase its robustness [10] . 

Diverse control techniques have been developed in the last 

years e.g. sliding-mode control [12] , robust control [13] , optimal 

control [14] , inverse optimal control [15,16] , and impulsive con- 

trol [17] . However, the optimal control can determine the input 

that will force a process to satisfy physical constraints while a per- 

formance criterion is minimized [16] . To this end, it is required 

to solve the associated Hamilton–Jacobi–Bellman (HJB) equation, 

which is not an easy task [9] . An alternative way to solve directly 

the HJB equation is based on the inverse optimal control, which 

allows to develop a stabilizing control law that optimizes a cost 

functional [9,15,16] . 

Impulsive control refers to systems that at least one state vari- 

able is impulsively changeable leading to impulsive differential 

equations [17] . The impulsive control has many applications such 
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as HIV treatment [18–20] , influenza treatment [21] , vaccination 

strategies at a population level [22] , economics and biological sys- 

tems [23] . 

In this work, we establish a neural inverse optimal impulsive 

control framework for discrete-time systems. The controlled sys- 

tem is identified by a RHONN, which is then used in the control 

design process. In principle, the neurocontroller does not require 

previous knowledge of the original system to be controlled. The 

scheme herein presented is applied to the problem of influenza 

virus infection treatment. The control policies are based on the 

discrete-time RHONN to forecast drug amounts for within-host in- 

fluenza virus infection. The main goal is to reach similar efficacies 

with respect to the current Food and Drug Administration (FDA) 

medication but reducing the amount of the administered drug. 

2. Neural identification 

Notation. The notation employed through this paper is as follows: 

� denotes the set of real numbers. � 

n denotes the set of n × 1 

column vectors. � 

n × m denotes the set of n × m real matrices. ℵ ∈ 

Z 

+ ∪ 0 = { 0 , 1 , 2 , . . . } denotes the set of non-negative integers. P n 

denotes the set of n × n positive-definite matrices. N 

n is a n × n 

nonnegative definite matrix and S ⊂ℵ is the resetting set, which 

is reserved for control instants action. Moreover, ( · ) T denotes the 

matrix transpose and (·) −1 
stands for the matrix inverse. 

2.1. Recurrent high order neural networks 

In this subsection, we study the identification problem of a gen- 

eral nonlinear system. Consider the following discrete-time sys- 

tem 

x ( k + 1 ) = F ( x ( k ) , u ( k ) ) + ε zi , (1) 

where x ( k ) ∈ � 

n is the state vector of the system. u ( k ) ∈ � 

m is the 

control input. F : � 

n × � 

m → � 

n is a nonlinear function and k ∈ ℵ is 

the sampling step. In addition, to identify the discrete-time nonlin- 

ear system (1) we can employ the following series-parallel struc- 

ture discrete-time RHONN [6,24] 

χi (k + 1) = ω 

T 
i z i (x (k ) , u (k )) , (2) 

where i = 1 , . . . , n . n is the state dimension. χ i ( k ) is the state of the 

i th neuron and ω i is the respective on-line adapted weight vector. 

z i ( x ( k ), u ( k )) is given by 

z i (x (k ) , u (k )) = 

⎛ 

⎜ ⎜ ⎝ 

z i 1 
z i 2 
. . . 

z i L i 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∏ 

j∈ I 1 
ξ

d i j 
i j 

(1) 

∏ 

j∈ I 2 
ξ

d i j 
i j 

(2) 

. . . ∏ 

j∈ I L i 
ξ

d i j 
i j 

(L i ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (3) 

ξi = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ξi 1 
. . . 

ξi n 

ξi n +1 

. . . 
ξi n + m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ϕ( x 1 ) 
. . . 

ϕ( x n ) 
u 1 

. . . 
u m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (4) 

ϕ ( v ) = 

1 

1 + e −a v , a > 0 . (5) 

L i is the respective number of high order connections. m is the 

number of external inputs. { I 1 , I 2 , . . . , I L i } is a collection of non- 

ordered subsets of { 1 , . . . , n + m } , with d ij ( k ) being a nonnegative 

integer. u = { u 1 , u 2 , . . . u m 

} T in (4) is the input vector to the neural 

network with ϕ( · ) defined by (5) where v can be a real value vari- 

able [4,6,24] . To identify the general discrete-time nonlinear sys- 

tem (1) using the RHONN (2) , consider that εzi is a bounded ap- 

proximation error that can be reduced by increasing the number 

of the adjustable weights [6] . 

Assumption 1. There exist an ideal weight vector ω i 
∗ such that 

‖ ∈ zi ‖ can be minimized on a compact set �z i ⊂ � 

L i . The ideal 

weight vector ω i 
∗ is an artificial quantity for the analysis approach. 

It is assumed that this vector exists and is constant but unknown 

[6] . 

2.2. Network training with the Extended Kalman filter 

The training of a neural network is a process in which the neu- 

ral network learns a specific task, this training can be on-line or 

off-line [25,26] . The EKF-based training algorithm estimates the 

neural network weights which become the state of the network. 

The error between the measured output of the dynamical system 

and the output of the neural network is considered as additive 

white noise [9,26] . The training of RHONN (2) is performed on-line 

by the modified EKF-based algorithm, as follows [4] : 

ω i (k + 1) = ω i (k ) + ηi K i (k ) e i (k ) , (6) 

K i (k ) = ρi (k ) H i (k ) M i (k ) , (7) 

ρi ( k + 1 ) = ρi ( k ) − K i ( k ) H 

T 
i ( k ) ρi ( k ) + Q i ( k ) , (8) 

with 

M i (k ) = [ 
 i (k ) + H 

T 
i (k ) ρi (k ) H i (k )] −1 , 

e i (k ) = x i (k ) − χi (k ) , (9) 

H i j = 

[
∂ χi (k ) 

∂ ω i j (k ) 

]T 

, (10) 

where i = 1 , . . . , n and j = 1 , . . . , L i . e i ( k ) ∈ � is the respective iden- 

tification error. ρi (k ) ∈ � 

L i ×L i is the prediction error associated co- 

variance matrix at the step k . ω i ∈ � 

L i is the weight vector consid- 

ered as state of the network. χ i ( k ) is the i th neural network state. 

x i ( k ) is the i th plant state, n is the number of states. K i ∈ � 

L i is the 

Kalman gain vector. Q i ∈ � 

L i ×L i is the state noise associated covari- 

ance matrix. ϱi ∈ � is the measurement noise associated covariance. 

H i ∈ � 

L i is a vector, in which each entry H ij is the derivative of one 

of the neural network state χ i ( k ), with respect to one neural net- 

work weight ω ij defined in (10) . A common practice is that ρ i and 

Q i are initialized as diagonal matrices, with entries ρ i (0) and Q i (0), 

respectively [4] . It is important to remark that for the EKF, H i ( k ), 

ρ i ( k ) and K i ( k ) are bounded [27] . The stability of a RHONN trained 

with the EKF to identify a discrete-time nonlinear system has been 

previously studied [24] . 

3. Inverse optimal impulsive neurocontrol 

In this section, we present inverse optimal control policies for 

a discrete-time impulsive system. First, we set the optimal con- 

trol framework and the dynamical system to be analyzed and con- 

trolled in terms of the RHONN identified states. Then, an inverse 

optimal control approach is established. 

3.1. Impulsive optimal control methods 

This subsection briefly discusses the optimal control method- 

ology and its properties. Consider the discrete-time nonlinear dy- 

namical system of the form 

x (k + 1) = f (x (k )) + gu (k ) , (11) 
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