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Most real world combinatorial optimization problems are affected by noise in the input 
data, thus behaving in the high noise limit like large disordered particle systems, e.g. 
spin glasses or random networks. Due to uncertainty in the input, optimization of such 
disordered instances should infer stable posterior distributions of solutions conditioned 
on the noisy input instance. The maximum entropy principle states that the most stable 
distribution given the noise influence is defined by the Gibbs distribution and it is 
characterized by the free energy. In this paper, we first provide rigorous asymptotics of the 
difficult problem to compute the free energy for two combinatorial optimization problems, 
namely the sparse Minimum Bisection Problem (sMBP) and Lawler’s Quadratic Assignment 
Problem (LQAP). We prove that both problems exhibit phase transitions equivalent to 
the discontinuous behavior of Derrida’s Random Energy Model (REM). Furthermore, the 
derived free energy asymptotics lead to a theoretical justification of a recently introduced 
concept [3] of Gibbs posterior agreement that measures stability of the Gibbs distributions 
when the cost function fluctuates due to randomness in the input. This relatively new 
stability concept may potentially provide a new method to select robust solutions for a 
large class of optimization problems.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Overview

Combinatorial optimization arises in many real world settings and these problems are often notoriously difficult to solve 
due to data dependent noise in the parameters defining such instances. Algorithms that minimize these noisy instances 
or approximate their global minimum return a solution that is a random variable due to input randomness and that is 
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Fig. 1. Illustration of the notation: each of the solutions (examples shown in the figure are ci , c j , ck) includes N (in the figure N = 7) objects from the 
underlying set Sn . The cost function of a solution is the sum of weights assigned to the objects, which belong to that solution.

most often highly unstable. Therefore, we ask the natural questions: What is the distribution of the output returned by the 
algorithm? Can we stabilize such an output distribution by regularizing the algorithm?

Algorithm design in noise affected real world settings requires both statistical as well as computational considerations: 
first, we have to ensure that outputs of algorithms are typical in a statistical sense, i.e., they have to occur with high 
probability. Second, such typical outputs have to be computable in an efficient way with efficient resources. The reader 
should notice that statistical requirements dominate computational ones in an epistemological sense: A computational result 
has to be rejected if it is atypical since it lacks predictive power. Computationally, we might require significantly different 
algorithmic resources (time and space) to calculate typical solutions for typical inputs compared to minimizing the empirical 
risk.

Due to the statistical nature of inference, we have to efficiently compute posterior distributions of solutions given input 
data. Open theoretical issues emerge for this strategy, e.g., analytical computation of macroscopic properties like entropy, 
expected log-partition function or expected costs [12,25]. The expected log-partition function known also as the free energy, 
appeared in the context of combinatorial optimization since the mid 80’s; see e.g., Vannimenus and Mézard [26] which 
explored the free energy properties of the traveling salesman problem. An intriguing property of free energy is the emer-
gence of discontinuities of certain order when changing the concentration of the posterior distribution. Such abrupt changes 
of macroscopic properties, also known as phase transitions, are characteristic features of various large systems and have 
generated a long-lasting interest in theory of discrete structures (see [7,15]).

The concept “free energy” found also applications in theoretical computer science. Recently, in a series of papers on robust 
learning, Buhmann [3], Busse et al. [5] introduced a robustness score function called the expected log-posterior agreement
(eLPA) for measuring “goodness” of robust solutions. Although the eLPA arose in a different field, it is tightly connected to 
computing free energies, as we see later in the paper. Furthermore, estimating the free energy for combinatorial optimization 
problems allow us to justify theoretically some experimental results obtained for these problems.

For the sake of completeness we should mention here that the statistical physics community developed an equally inten-
sive research interest for finding theoretical laws that govern the behavior of macroscopic thermodynamic properties as the 
free energy. Many interesting models of such large systems were introduced relatively early, e.g. the Sherrington–Kirkpatrick 
(SK) spin glass model (see [22]). It required, however, considerable time and effort to develop rigorous techniques for solving 
them. For example, Derrida [9] introduced a very simple, but exactly solvable model called random energy model (REM) as 
the limit of the SK models family. Later, Aizenman et al. [1] published an exact solution in the high-temperature phase for 
the SK model. The general question of the exact free energy behavior became increasingly fascinating: it triggered a new 
wave of latest research (see [2,25]). The reader should also note that many interesting heuristic tools have been developed 
in the context of statistical physics over the last several decades, such as the replica method [20], the cavity method [19]
and meanfield approximation schemes with belief propagation algorithms.

1.2. Notation and setting

We consider optimization problems that can be formulated as follows (for explanation see Fig. 1): let n be some integer 
determining the size of the problem (e.g., number of vertices in a graph, size of a matrix, etc.), and Sn a finite set of objects 
(e.g., set of edges, elements of a matrix, etc). Let X denote the input to the problem (data).

Define Cn as a finite set of all feasible solutions (e.g. bisections of a graph), and Sn(c) ⊆ Sn , c ∈ Cn , as a finite set 
of objects belonging to the feasible solution c (e.g., set of edges belonging to a bisection). Let wi(X) = W i , i ∈ Sn , be 
the weight assigned to the i-th object. In this paper we consider optimization problems for which the cost function and 
optimization task are defined as follows:

R(c, X) =
∑

i∈Sn(c)

wi(X) and copt(X) = arg min
c∈Cn

R(c, X). (1)

We also denote the cardinality of the feasible set as m (i.e., m := |Cn|) and the cardinality of Sn(c) as N for all c ∈ Cn
(i.e., N := |Sn(c)|). In this paper, we focus on optimization problems in which logm = o(N) holds true (see [23]). We call 
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