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This paper proposes an exact exponential algorithm for the single machine total tardiness 
problem. It exploits the structure of a basic branch-and-reduce framework based on the 
well known Lawler’s decomposition property that solves the problem with worst-case 
complexity in time O∗(3n) and polynomial space. The proposed algorithm, called branch-
and-merge, is an improvement of the branch-and-reduce technique with the embedding of 
a node merging operation. Its time complexity converges to O∗(2n) keeping the space 
complexity polynomial. This improves upon the best-known complexity result for this 
problem provided by dynamic programming across the subsets with O∗(2n) worst-case 
time and space complexity. The branch-and-merge technique is likely to be generalized to 
other sequencing problems with similar decomposition properties.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of this century, the design of exact exponential algorithms for NP-hard problems has been attracting 
more and more researchers. Although the research in this area dates back to early 60s, the discovery of new design and 
analysis techniques has led to many new developments. The main motivation behind the rise of interest in this area is 
the study of the intrinsic complexity of NP-hard problems. In fact, since the dawn of computer science, some of these 
problems appeared to be solvable with a lower exponential complexity than others belonging to the same complexity class. 
For a survey on the most effective techniques in designing exact exponential algorithms, readers are kindly referred to 
Woeginger’s paper [21] and to the book by Fomin and Kratsch [6].

In spite of the growing interest on exact exponential algorithms, few results are yet known on scheduling problems, see 
the survey of Lenté et al. [12]. Lenté et al. [11] introduced the so-called class of multiple constraint problems and showed 
that all problems fitting into that class could be tackled by means of the Sort & Search technique. Further, they showed that 
several knowns scheduling problems are part of that class. However, all these problems required assignment decisions only 
and none of them required the solution of a sequencing problem.

This paper focuses on a pure sequencing problem, the single machine total tardiness problem, denoted by 1|| ∑ T j . In this 
problem, a job set N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, a processing time p j
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and a due date d j are defined. The problem asks for arranging the job set into a sequence S so as to minimize T (N, S) =∑n
j=1 T j = ∑n

j=1 max{C j −d j, 0}, where C j is the completion time of job j. The 1|| ∑ T j problem is NP-hard in the ordinary 
sense as shown by Du and Leung [3]. It has been extensively studied in the literature and many exact procedures [2,10,
15,18] have been proposed. The current state-of-the-art exact method of Szwarc et al. [18] dates back to 2001 and solves 
to optimality instances with up to 500 jobs. The complexity of this algorithm is analyzed by Shang et al. [17]. All these 
procedures are search tree approaches, but dynamic programming algorithms were also considered. On the one hand, a 
pseudo-polynomial dynamic programming algorithm was proposed by Lawler [10] running with complexity O(n4 ∑

pi). On 
the other hand, the standard technique of doing dynamic programming across the subsets (see, for instance, Fomin and 
Kratsch [6]) applies and runs with complexity O(n22n) both in time and in space. Latest theoretical developments for the 
problem, including both exact and heuristic approaches can be found in the recent survey of Koulamas [9].

In the rest of the paper, the O∗(·) notation [21], commonly used in the context of exact exponential algorithms, is used to 
measure worst-case complexities. Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In what follows, 
for an integer n, we express running-time bounds of the form O(p(n) · T (n))) as O∗(T (n)). We denote by T (n) the time 
required in the worst-case to exactly solve the considered combinatorial optimization problem of size n, i.e., the number 
of jobs in our context. As an example, the complexity of dynamic programming across the subsets for the total tardiness 
problem can be expressed as O∗(2n). By the way, the number of jobs n may not be the only possible measure of the instance 
size. Other parameters can be chosen, based on which different complexity analysis can be conducted. For scheduling 
problems, some results can be found in Mnich and Wiese [14], Mnich and van Bevern [13] and Hermelin et al. [8].

To the authors’ knowledge, there is no available exact algorithm for this problem running in O∗(cn) (c being a constant) 
time and polynomial space. Admittedly, one could possibly apply a divide-and-conquer approach [1,7]. This would lead to 
an O∗(4n) complexity in time requiring polynomial space. The aim of this work is to present an improved exact algorithm 
exploiting known decomposition properties of the problem. Different versions of the proposed approach are described in 
Section 2. A final version making use of a new technique called branch-and-merge that avoids the solution of several 
equivalent subinstances in the branching tree is presented in Section 3. We provide the algorithm for the worst-case scenario 
for the simplicity of presentation and we prove that its complexity tends to O∗(2n) in time and polynomial in space. Finally, 
Section 4 concludes the paper with final remarks.

2. A branch-and-reduce approach

We recall here some basic properties of the total tardiness problem and introduces the notation used along the paper. 
Given the job set N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence, where i < j whenever 
pi > p j (or pi = p j and di ≤ d j). Let also ([1], [2], . . . , [n]) be an EDD (Earliest Due Date first) sequence, where i < j
whenever d[i] < d[ j] (or d[i] = d[ j] and p[i] ≤ p[ j]). As the cost function is a regular performance measure, we know that in 
an optimal solution, the jobs are processed with no interruption starting from time zero. Let B j and A j be the sets of jobs 
that precede and follow job j in an optimal sequence that is being searched. Correspondingly, C j = ∑

k∈B j
pk + p j . Similarly, 

if job j is assigned to position k, we denote by C j(k) the corresponding completion time and by B j(k) and A j(k) the sets 
of predecessors and successors of j, respectively.

The main known theoretical properties are the following.

Property 1. (Emmons [4]) Consider two jobs i and j with pi < p j . Then, i precedes j in an optimal schedule if di ≤ max{d j, C j}, else 
j precedes i in an optimal schedule if di + pi > C j .

Property 2. (Lawler [10]) Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k
and the jobs preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) =
{[h + 1], . . . , [n]}.

Property 3. (Szwarc and Mukhopadhyay [19]) For any pair of adjacent positions (i, i + 1) that can be assigned to job 1, at least one of 
them can be eliminated.

In terms of complexity analysis, we recall (see, for instance, Eppstein [5]) that, if it is possible to bound above T (n)

by a recurrence expression of the type T (n) ≤ ∑h
i=1 T (n − ri) + O(p(n)), then we have

∑h
i=1 T (n − ri) + O(p(n)) =

O∗(α(r1, . . . , rh)
n) where α(r1, . . . , rh) is the largest root of the function f (x) = 1 − ∑h

i=1 x−ri .
A basic branch-and-reduce algorithm TTBR1 (Total Tardiness Branch-and-Reduce version 1) can be designed by exploiting 

Property 2, which allows to decompose the problem instance into two smaller subinstances when the position of the 
longest job l is given. The basic idea is to iteratively branch by assigning job l to every eligible branching position and 
correspondingly decompose the instance. Each time job l is assigned to a certain position i, two different subinstances 
are generated, corresponding to schedule the jobs before l (inducing subinstance Bl(i)) or after l (inducing subinstance 
Al(i)), respectively. The algorithm operates by applying to any given job set S starting at time t function T T B R1(S, t) that 
computes the corresponding optimal solution. With this notation, the original instance is indicated by N = {1, ..., n} and the 
optimal solution is reached when function T T B R1(N, 0) is computed.
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