
JID:TCS AID:11622 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.238; Prn:8/06/2018; 8:27] P.1 (1-17)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An exact exponential branch-and-merge algorithm for the

single machine total tardiness problem

Michele Garraffa a, Lei Shang b, Federico Della Croce c,d, Vincent T’kindt b,∗
a DAUIN – Politecnico di Torino, Torino, Italy
b Laboratoire d’Informatique Fondamentale et Appliquée (EA 6300), ERL CNRS 7002 ROOT, Tours, France
c DIGEP – Politecnico di Torino, Torino, Italy
d CNR, IEIIT, Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2017
Received in revised form 29 May 2018
Accepted 31 May 2018
Available online xxxx
Communicated by F.V. Fomin

Keywords:
Exact exponential algorithm
Single machine total tardiness
Branch and merge

This paper proposes an exact exponential algorithm for the single machine total tardiness
problem. It exploits the structure of a basic branch-and-reduce framework based on the
well known Lawler’s decomposition property that solves the problem with worst-case
complexity in time O∗(3n) and polynomial space. The proposed algorithm, called branch-
and-merge, is an improvement of the branch-and-reduce technique with the embedding of
a node merging operation. Its time complexity converges to O∗(2n) keeping the space
complexity polynomial. This improves upon the best-known complexity result for this
problem provided by dynamic programming across the subsets with O∗(2n) worst-case
time and space complexity. The branch-and-merge technique is likely to be generalized to
other sequencing problems with similar decomposition properties.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of this century, the design of exact exponential algorithms for NP-hard problems has been attracting
more and more researchers. Although the research in this area dates back to early 60s, the discovery of new design and
analysis techniques has led to many new developments. The main motivation behind the rise of interest in this area is
the study of the intrinsic complexity of NP-hard problems. In fact, since the dawn of computer science, some of these
problems appeared to be solvable with a lower exponential complexity than others belonging to the same complexity class.
For a survey on the most effective techniques in designing exact exponential algorithms, readers are kindly referred to
Woeginger’s paper [21] and to the book by Fomin and Kratsch [6].

In spite of the growing interest on exact exponential algorithms, few results are yet known on scheduling problems, see
the survey of Lenté et al. [12]. Lenté et al. [11] introduced the so-called class of multiple constraint problems and showed
that all problems fitting into that class could be tackled by means of the Sort & Search technique. Further, they showed that
several knowns scheduling problems are part of that class. However, all these problems required assignment decisions only
and none of them required the solution of a sequencing problem.

This paper focuses on a pure sequencing problem, the single machine total tardiness problem, denoted by 1|| ∑ T j . In this
problem, a job set N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, a processing time p j

* Corresponding author.
E-mail addresses: michele.garraffa@polito.it (M. Garraffa), shang@univ-tours.fr (L. Shang), federico.dellacroce@polito.it (F. Della Croce),

tkindt@univ-tours.fr (V. T’kindt).

https://doi.org/10.1016/j.tcs.2018.05.040
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.05.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:michele.garraffa@polito.it
mailto:shang@univ-tours.fr
mailto:federico.dellacroce@polito.it
mailto:tkindt@univ-tours.fr
https://doi.org/10.1016/j.tcs.2018.05.040

JID:TCS AID:11622 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.238; Prn:8/06/2018; 8:27] P.2 (1-17)

2 M. Garraffa et al. / Theoretical Computer Science ••• (••••) •••–•••

and a due date d j are defined. The problem asks for arranging the job set into a sequence S so as to minimize T (N, S) =∑n
j=1 T j = ∑n

j=1 max{C j −d j, 0}, where C j is the completion time of job j. The 1|| ∑ T j problem is NP-hard in the ordinary
sense as shown by Du and Leung [3]. It has been extensively studied in the literature and many exact procedures [2,10,
15,18] have been proposed. The current state-of-the-art exact method of Szwarc et al. [18] dates back to 2001 and solves
to optimality instances with up to 500 jobs. The complexity of this algorithm is analyzed by Shang et al. [17]. All these
procedures are search tree approaches, but dynamic programming algorithms were also considered. On the one hand, a
pseudo-polynomial dynamic programming algorithm was proposed by Lawler [10] running with complexity O(n4 ∑

pi). On
the other hand, the standard technique of doing dynamic programming across the subsets (see, for instance, Fomin and
Kratsch [6]) applies and runs with complexity O(n22n) both in time and in space. Latest theoretical developments for the
problem, including both exact and heuristic approaches can be found in the recent survey of Koulamas [9].

In the rest of the paper, the O∗(·) notation [21], commonly used in the context of exact exponential algorithms, is used to
measure worst-case complexities. Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In what follows,
for an integer n, we express running-time bounds of the form O(p(n) · T (n))) as O∗(T (n)). We denote by T (n) the time
required in the worst-case to exactly solve the considered combinatorial optimization problem of size n, i.e., the number
of jobs in our context. As an example, the complexity of dynamic programming across the subsets for the total tardiness
problem can be expressed as O∗(2n). By the way, the number of jobs n may not be the only possible measure of the instance
size. Other parameters can be chosen, based on which different complexity analysis can be conducted. For scheduling
problems, some results can be found in Mnich and Wiese [14], Mnich and van Bevern [13] and Hermelin et al. [8].

To the authors’ knowledge, there is no available exact algorithm for this problem running in O∗(cn) (c being a constant)
time and polynomial space. Admittedly, one could possibly apply a divide-and-conquer approach [1,7]. This would lead to
an O∗(4n) complexity in time requiring polynomial space. The aim of this work is to present an improved exact algorithm
exploiting known decomposition properties of the problem. Different versions of the proposed approach are described in
Section 2. A final version making use of a new technique called branch-and-merge that avoids the solution of several
equivalent subinstances in the branching tree is presented in Section 3. We provide the algorithm for the worst-case scenario
for the simplicity of presentation and we prove that its complexity tends to O∗(2n) in time and polynomial in space. Finally,
Section 4 concludes the paper with final remarks.

2. A branch-and-reduce approach

We recall here some basic properties of the total tardiness problem and introduces the notation used along the paper.
Given the job set N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence, where i < j whenever
pi > p j (or pi = p j and di ≤ d j). Let also ([1], [2], . . . , [n]) be an EDD (Earliest Due Date first) sequence, where i < j
whenever d[i] < d[j] (or d[i] = d[j] and p[i] ≤ p[j]). As the cost function is a regular performance measure, we know that in
an optimal solution, the jobs are processed with no interruption starting from time zero. Let B j and A j be the sets of jobs
that precede and follow job j in an optimal sequence that is being searched. Correspondingly, C j = ∑

k∈B j
pk + p j . Similarly,

if job j is assigned to position k, we denote by C j(k) the corresponding completion time and by B j(k) and A j(k) the sets
of predecessors and successors of j, respectively.

The main known theoretical properties are the following.

Property 1. (Emmons [4]) Consider two jobs i and j with pi < p j . Then, i precedes j in an optimal schedule if di ≤ max{d j, C j}, else
j precedes i in an optimal schedule if di + pi > C j .

Property 2. (Lawler [10]) Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k
and the jobs preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) =
{[h + 1], . . . , [n]}.

Property 3. (Szwarc and Mukhopadhyay [19]) For any pair of adjacent positions (i, i + 1) that can be assigned to job 1, at least one of
them can be eliminated.

In terms of complexity analysis, we recall (see, for instance, Eppstein [5]) that, if it is possible to bound above T (n)

by a recurrence expression of the type T (n) ≤ ∑h
i=1 T (n − ri) + O(p(n)), then we have

∑h
i=1 T (n − ri) + O(p(n)) =

O∗(α(r1, . . . , rh)
n) where α(r1, . . . , rh) is the largest root of the function f (x) = 1 − ∑h

i=1 x−ri .
A basic branch-and-reduce algorithm TTBR1 (Total Tardiness Branch-and-Reduce version 1) can be designed by exploiting

Property 2, which allows to decompose the problem instance into two smaller subinstances when the position of the
longest job l is given. The basic idea is to iteratively branch by assigning job l to every eligible branching position and
correspondingly decompose the instance. Each time job l is assigned to a certain position i, two different subinstances
are generated, corresponding to schedule the jobs before l (inducing subinstance Bl(i)) or after l (inducing subinstance
Al(i)), respectively. The algorithm operates by applying to any given job set S starting at time t function T T B R1(S, t) that
computes the corresponding optimal solution. With this notation, the original instance is indicated by N = {1, ..., n} and the
optimal solution is reached when function T T B R1(N, 0) is computed.

Download English Version:

https://daneshyari.com/en/article/8960187

Download Persian Version:

https://daneshyari.com/article/8960187

Daneshyari.com

https://daneshyari.com/en/article/8960187
https://daneshyari.com/article/8960187
https://daneshyari.com

