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The Minimal Constraint Satisfaction Problem, or Minimal CSP for short, arises in a number 
of real-world applications, most notably in constraint-based product configuration. It is 
composed of the set of CSP problems where every allowed tuple can be extended to a 
solution. Despite the very restrictive structure, computing a solution to a Minimal CSP 
instance is NP-hard in the general case. In this paper, we look at three independent ways to 
add further restrictions to the problem. First, we bound the size of the domains. Second, we 
define the arity as a function on the number of variables. Finally we study the complexity 
of computing a solution to a Minimal CSP instance when not just every allowed tuple, but 
every partial solution smaller than a given size, can be extended to a solution. In all three 
cases, we show that finding a solution remains NP-hard. All these results reveal that the 
hardness of minimality is very robust.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An instance of the Minimal Constraint Satisfaction Problem, or Minimal CSP for short, is a CSP instance where each tuple 
allowed in a constraint relation is part of at least one solution [9]. Since all Minimal CSP instances are satisfiable, solving 
such an instance does not refer to the decision problem of determining whether it has a solution, but to the exemplification 
of a solution.

Minimal CSP is often found ‘naturally’ in configuration problems [8]. A seller might want to offer its customers a large 
degree of customization. If, for example, the product sold is a car, some possible options might be the color of the vehicle 
and whether it is automatic or manual. If after choosing “automatic”, “red” remains a valid option for the color parameter, 
then it is preferable that at least one red automatic car can be configured. The Minimal CSP can answer a number of 
queries relevant to product configuration in polynomial time [6], such as whether a solution exists that satisfies a given 
unary constraint, or whether an assignment to k variables is consistent in a Minimal CSP where all constraints are defined 
over k-tuples of the variables. These queries can be answered simply by inspecting the constraints of the problem instance. 
However, answering queries over arbitrary assignments to the variables remains hard, which has given rise to many studies 
of the use of automata and decision diagrams to reason about the solution sets of complex configuration problems [2].

The notion of minimality is related to that of robustness [1,7]. Robust CSP is the problem of determining whether every 
partial solution of a given size can be extended to a full solution, in effect checking the minimality of an instance. On the 
other hand, Minimal CSP already assumes that this condition is fulfilled and instead requires to find a solution.

The restrictions defining minimality can be viewed as extreme forms of consistency. The concept of minimality is that all 
values not belonging to a solution have been pruned, all constraints allowing values that cannot possibly appear in a same 
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solution have been adjusted. Yet, even though minimality offers an abundance of data about the CSP instances it applies to, 
it turns out that algorithms cannot use this information to significantly distinguish Minimal CSP instances from general CSP 
ones. Indeed, we prove that when bounding the size of the domains by a constant d and the arity of the constraints by a 
constant k, the Minimal CSP and the general CSP are NP-hard for the exact same values of d and k.

We also expand the concept of minimality, to study if hardness is conserved. We present the different directions that we 
considered. Our main result is the one revolving around what seems like the most natural expansion. In our new class of 
Minimal CSP instances, we significantly increase the number of sets of compatible values that can be extended to a solution. 
While one may think this leads to triviality, or at least tractability, we show that again no algorithm can exploit this new 
information in a useful way, unless P = NP. The long-term objective of this work is to identify the frontier of intractability 
for Minimal CSP.

Each of the three next sections of the paper presents a particular way to further restrict the Minimal CSP. In Section 2, 
we start by formally defining both the general CSP and the Minimal CSP, then proceed to study the complexity of the 
Minimal CSP when bounding the arity of the constraints and the size of the domains. In particular, we present a complexity 
classification over these two parameters that extends Gottlob’s complexity result [6] to instances with very small domain 
sizes. The contents of this section have been previously published [5]. In Section 3 we provide a look into the behavior of the 
Minimal CSP with global constraints. Section 4 focuses on generalizing the core notion of extendable tuple in the definition 
of Minimality to extendable partial solution. We begin in Section 4.1 by formalizing and illustrating the new concepts 
that we introduce. Then in Section 4.2 we present the main result of the paper, showing that the inherent hardness of 
minimality is conserved even with considerable additional restrictions. Finally, we conclude in Section 5 by summarizing 
our contributions and outlining some future work in this area.

2. Bounding the size of the domains and the arity

The first of our three generalizations of minimality deals with the arity and size parameters. Before presenting our 
complexity proofs, we start by formally defining the core notions of the Constraint Satisfaction Problem. In particular, we 
highlight the fact that we do not view the constraints of a CSP instance as a list of forbidden tuples, as is standard in the 
constraint literature, but instead as the complete specification of the value of every tuple of size smaller or equal than the 
arity, where the value here means either allowed or forbidden. Our main reason for doing so is to emphasize the role of 
allowed tuples, which are central to the notion of minimality but mostly ignored by the conventional CSP definition.

2.1. Definitions

We recall the definition of the Constraint Satisfaction Problem, or CSP.

Definition 1 (CSP). A CSP instance I comprises:

1. A set V = {v1, . . . , vn} of n variables.
2. A set A = {Av1 , . . . , Avn } of n domains. For all i ∈ [1, n], Avi = {a1, . . . , adi } contains the di possible values for the 

variable vi .
3. An integer k and a set C = {C1, . . . , Cm} of m constraints. To each constraint Ci is associated a different scope W i =

{w1, . . . , wki } ⊆ V , with 2 ≤ ki ≤ k, and a set Ui of ki -tuples from Aw1 × Aw2 × · · · × Awki
. We say that these tuples 

are allowed, that the tuples from Aw1 × Aw2 × · · · × Awki
that are not in Ui are forbidden and that ki is the arity of the 

constraint Ci .
For each set V ′ ⊆ V containing k′ variables with 2 ≤ k′ ≤ k, there is exactly one constraint in C whose scope is exactly 
V ′ (so m = ∑k

k′=2

(n
k′
)
). We say that k is the arity of the instance.

Note that since the scopes of the constraints cover all possible sets of variables of size between 2 and the arity of the 
instance, defining the constraints for a given k-ary CSP instance I is equivalent to specifying whether each tuple of k′ values, 
with 2 ≤ k′ ≤ k, is allowed or forbidden.

Throughout the paper, and as long as the context is clear, we will associate a tuple of assignments with the corresponding 
set of values. For example, we will associate the 3-tuple composed of the value a1 assigned to the variable v1, the value a2
assigned to the variable v2 and the value a3 assigned to the variable v3 with the set B = {a1, a2, a3}, as long as it is clear 
that the value ai ∈ B is the same as the value ai ∈ Avi , for i = 1, 2, 3.

A compatible tuple B , or partial solution, is a set of assignments to variables of I such that no subset of B is a forbidden 
tuple. Similarly, an incompatible tuple B is a set of assignments to variables of I such that there is a subset of B which is 
a forbidden tuple. We also say that values in a compatible (respectively incompatible) tuple are compatible (respectively 
incompatible) with each other. In particular, any value in a forbidden tuple B is incompatible with the other values in B .

A solution, or full solution, to I is a partial solution on V . We now formally define the Minimal Constraint Satisfaction 
Problem, or Minimal CSP.
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