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a b s t r a c t

In this paper, a (3+1)-dimensional nonlinear evolution equation and its reduction is studied
by use of the Hirota bilinear method and the test function method. With symbolic compu-
tation, diversity of exact solutions is obtained by solving the under-determined nonlinear
system of algebraic equations for the associated parameters. Finally, analysis and graphical
simulation are given to reveal the propagation and dynamical behavior of the solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear evolution equations (NLEEs) play an important role inmathematical physics [1–7]. Variousmechanical features
in fluid dynamics, optical communications and nonlinear vibration are described by NLEEs [8–11]. Generally speaking, it is
very difficult to find exact solutions to NLEEs [12–14]. With the development of symbolic computation, it is reasonable to
employ test function method in constructing exact solutions to NLEEs [15,16]. Further, it is of importance to solve high-
dimensional NLEEs to study the associated spatiotemporal features [17–23].

In this paper, we will study a (3 + 1)-dimensional NLEE [24–30] as

3 uxz − (2 ut + uxxx − 2 u ux)y + 2 (ux ∂−1
x uy)x = 0, (1)

where ∂−1
x stands for an inverse operator of ∂x =

∂
∂x . Eq. (1) was originally introduced as a model for the study of

algebraic-geometrical solutions [24], and its integrability and large classes of exact solutions have been studied, e.g., the
soliton, positon, negaton and rational solutions [25–29]. Further, two types of resonant solutions are obtained by the
parameterization for wave numbers and frequencies for linear combinations of exponential traveling waves [30].

Through the following transformation

u = −3 [lnf (x, y, z, t)] xx, (2)
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Eq. (1) can be cast into the bilinear form as

(3Dx Dz − 2Dy Dt − D3
x Dy) f · f = 0, (3)

where Dx Dz , Dy Dt and D3
x Dy are bilinear operators [12] defined by

Dα
xD

β
yD

γ
z D

δ
t (f · g) =

( ∂

∂x
−

∂

∂x′

)α( ∂

∂y
−

∂

∂y′

)β( ∂

∂z
−

∂

∂z ′

)γ ( ∂

∂t
−

∂

∂t ′

)δ

× f (x, y, z, t)g(x′, y′, z ′, t ′)
⏐⏐⏐
x′=x,y′=y,z′=z,t ′=t.

We assume that the solution to Eq. (3) is in the form of

f = e−ξ
+ δ1 cos(η) + δ2 cosh(γ ) + δ3 eξ , (4)

or

f = e−ξ
+ δ1 sin(η) + δ2 sinh(γ ) + δ3 eξ , (5)

where ξ = a1 x + b1 y + c1 z + d1 t , η = a2 x + b2 y + c2 z + d2 t , γ = a3 x + b3 y + c3 z + d3 t and ai, bi, ci, di, and δi (i =
1,2,3) are some constants to be determined later. Based on Eq. (4) or Eq. (5), we can derive exact solutions to Eq. (1).

The structure of this paper is as follows: In Section 2, we will solve Eq. (3) and obtain the exact solutions to Eq. (1). In
Section 3, we will give analysis and discussion on our solutions. Some figures describing the characteristics of our solutions
will be presented. In Section 4, we will conclude our results.

2. Diversity of exact solutions

2.1. Case I: based on the test function (4)

Substituting Eq. (4) into Eq. (3), we can obtain a large expression in terms of cos(η)eξ , cos(η)e−ξ , sin(η)eξ , sin(η)e−ξ ,
cosh(γ )eξ , sinh(γ )eξ , cosh(γ )e−ξ , sinh(γ )e−ξ , cos(η) cosh(γ ), sin(η) sinh(γ ), etc., which generate a list of algebraic equations
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1c1 − 3a2c2 − 2b1d1 + 2b2d2 − a31b1 − a32b2 + 3a21a2b2 + 3a1a22b1 = 0,

3a1c1 + 3a3c3 − 2b1d1 − 2b3d3 − a31b1 − a33b3 − 3a21a3b3 − 3a1a23b1 = 0,

3a1c2 + 3a2c1 − 2b1d2 − 2b2d1 − a31b2 + a32b1 − 3a21a2b1 + 3a1a22b2 = 0,

3a1c3 + 3a3c1 − 2b1d3 − 2b3d1 − a31b3 − a33b1 − 3a21a3b1 − 3a1a23b3 = 0,

3a3c3 − 3a2c2 − 2b3d3 + 2b2d2 − a32b2 − a33b3 + 3a22a3b3 + 3a2a23b2 = 0,

3a2c3 + 3a3c2 − 2b2d3 − 2b3d2 + a32b3 − a33b2 + 3a22a3b2 − 3a2a23b3 = 0,

δ3(12a1c1 − 8b1d1 − 16a31b1) + δ22(3a3c3 − 2b3d3 − 4a33b3) + δ21(2b2d2 − 3a2c2 − 4a32b2) = 0.

(6)

With symbolic computation, we solve two sets of parameters from Eq. (6):
The first set in this case is{

a1 = 1, a2 = 0, b1 = −
4
3a23

, b2 = −2, b3 = −
4
3a3

,

c1 = −
8(2a33 + 1)

9a3
, c2 = −

2(3a43 + 6a3 − 4)
9a23

, c3 = −
4(a23 + 3a3 + 2)

9a23
,

d1 =
a33 − a3 + 2

2a3
, d2 = −1, d3 = 1, δ3 =

a23δ
2
1

4(a23 − 1)
+

a23δ
2
2

4

}
, (7)

where a3, δ1 and δ2 are real constants.
Substituting parameters of Eq. (7) into Eq. (4), we have f = e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1 , which

leads to the exact solutions to Eq. (1) as

u = − 3
e−A1 + δ2a23 cosh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1

e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21
4(a23−1)

+
a23δ22
4 )eA1

+ 3
(−e−A1 + a3δ2 sinh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1 )2

(e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21
4(a23−1)

+
a23δ22
4 )eA1 )2

(8)
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