Analysis and numerical study of a mixed formulation of a two membranes problem

Mohammed Bouchlaghem, El Bekkaye Mermri *
Department of Mathematics, Faculty of Science, University Mohammed Premier, Boulevard Mohammed VI, 60000 Oujda, Morocco

A R TICLE INFO

Article history:

Received 20 October 2017
Received in revised form 5 June 2018
Accepted 13 June 2018
Available online xxxx

Keywords:

Variational inequality
Two membranes
Mixed formulation
Coincidence set
Numerical method

Abstract

In this paper, we present a reformulation of a two membranes problem as a mixed formulation problem based on the subdifferential of a continuous function of which the subdifferential leads to the characterization of the coincidence set. The reformulated problem is transformed into a saddle point problem. Then we present an iterative method to solve the problem and we prove the convergence of the approximate solutions to the exact one. Finally, some numerical examples are given.

© 2018 Elsevier Ltd. All rights reserved

1. Introduction

The two membranes problem consists of finding the equilibrium position of two uniform elastic membranes fixed at the boundary of a domain Ω of $\mathbb{R}^{n}(n \geq 1)$ and subjected to uniform external forces. We assume that the displacement of the membranes at the boundary is already prescribed. The existence and regularity theory for the problem of two membranes was developed by G. Vergara Caffarelli [1,2] (see also [3]). The first paper deals with uniformly elliptic linear case and the later deals with mean surface curvature equations. The regularity of the free boundary of the coincidence set of the two membranes has been studied in [3]. In [4] the authors reformulate the problem as a system of equations based on the subdifferential of a convex continuous function. In [5], the authors proposed a numerical approximation of the N-membranes problem, where the problem is reformulated, with a change of variables, as a bound constrained quadratic minimization problem. The N-membranes problem has been introduced by M. Chipot and G. Vergara Caffarelli in [6], where the authors studied the existence and regularity of the solution of the problem. Later, in $[7,8]$ the authors studied the existence and regularity of the solutions for quasilinear systems and the problem with non local constraints, respectively.

In this paper, we introduce a new mixed formulation of the two membranes problem, for linear elliptic case, based on appropriate variational inequality of the second kind and the notion of the subdifferential μ of a convex continuous function. This formulation is equivalent to a saddle point problem of which the Lagrange multiplier μ leads to the characterization of the coincidence (or contact) set of the two membranes, which is one of the unknowns of the problem. Then we present an iterative method to solve the problem and we prove the convergence of the approximate solutions. To validate the theoretical study we present some numerical examples.

The paper is structured as follows. In Section 2, we present the mathematical setting of the two membranes problem. In Section 3, we reformulate the problem as a mixed formulation problem and provide a relationship between the subdifferential μ and the coincidence set. Then in Section 4, we give an iterative method based on Uzawa type algorithm to

[^0]approximate the exact solution of the saddle point problem. Section 5 is devoted to prove the convergence of the approximate solution to the exact one. Finally, in Section 6 we give some numerical examples in one and two dimensional spaces.

2. Problem setting

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain with a smooth boundary $\partial \Omega,\left(f_{1}, f_{2}\right)$ be an element of $L^{2}(\Omega) \times L^{2}(\Omega)$ and $\left(g_{1}, g_{2}\right)$ be an element of $H^{1 / 2}(\partial \Omega) \times H^{1 / 2}(\partial \Omega)$, with $g_{1} \geq g_{2}$ on $\partial \Omega$. Set

$$
K:=\left\{\left(v_{1}, v_{2}\right) \in L^{2}(\Omega) \times L^{2}(\Omega): v_{1} \geq v_{2} \text { a.e. in } \Omega\right\}
$$

and for $i=1$, 2 we denote

$$
H_{g_{i}}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): v=g_{i} \text { on } \partial \Omega\right\}
$$

We consider the following problem:

$$
\left\{\begin{array}{l}
\text { Find } u=\left(u_{1}, u_{2}\right) \in K \cap\left(H_{g_{1}}^{1}(\Omega) \times H_{g_{2}}^{1}(\Omega)\right) \text { such that } \tag{1}\\
\sum_{i=1}^{2} \int_{\Omega} \nabla u_{i} \cdot \nabla\left(v_{i}-u_{i}\right) d x+\sum_{i=1}^{2} \int_{\Omega} f_{i}\left(v_{i}-u_{i}\right) d x \geq 0 \quad \forall\left(v_{1}, v_{2}\right) \in K \cap\left(H_{g_{1}}^{1}(\Omega) \times H_{g_{2}}^{1}(\Omega)\right)
\end{array}\right.
$$

This problem is called the two membranes problem, where the solution $\left(u_{1}, u_{2}\right)$ describes the displacement of the two membranes.

In this paper we use the same letters $g_{i}, i=1,2$, to denote a function of $H^{1}(\Omega)$ whose trace on the boundary is the given function g_{i}, respectively. If we set

$$
w_{1}:=u_{1}-g_{1} \quad \text { and } \quad w_{2}:=u_{2}-g_{2}
$$

then problem (1) becomes equivalent to the following problem:

$$
\left\{\begin{array}{l}
\text { Find } w=\left(w_{1}, w_{2}\right) \in K_{g} \cap\left(H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)\right) \text { such that } \tag{2}\\
\sum_{i=1}^{2} \int_{\Omega} \nabla\left(w_{i}+g_{i}\right) \cdot \nabla\left(v_{i}-w_{i}\right) d x+\sum_{i=1}^{2} \int_{\Omega} f_{i}\left(v_{i}-w_{i}\right) d x \geq 0 \\
\forall\left(v_{1}, v_{2}\right) \in K_{g} \cap\left(H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)\right)
\end{array}\right.
$$

where

$$
K_{g}:=\left\{\left(v_{1}, v_{2}\right) \in L^{2}(\Omega) \times L^{2}(\Omega): v_{1}+g_{1} \geq v_{2}+g_{2} \text { a.e. in } \Omega\right\}
$$

We denote

$$
\begin{aligned}
& f:=\left(f_{1}, f_{2}\right) . \\
& g:=\left(g_{1}, g_{2}\right) . \\
& {\left[H_{0}^{1}(\Omega)\right]^{2}:=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) .} \\
& {\left[L^{2}(\Omega)\right]^{2}:=L^{2}(\Omega) \times L^{2}(\Omega) .} \\
& a(u, v):=\int_{\Omega} \nabla u_{1} \cdot \nabla v_{1} d x+\int_{\Omega} \nabla u_{2} \cdot \nabla v_{2} d x \quad \forall u, v \in\left[H^{1}(\Omega)\right]^{2} . \\
& ((u, v)):=\int_{\Omega} u_{1} v_{1} d x+\int_{\Omega} u_{2} v_{2} d x \quad \forall u, v \in\left[L^{2}(\Omega)\right]^{2} .
\end{aligned}
$$

The bilinear functions $((\cdot, \cdot))$ and $a(\cdot, \cdot)$ are inner products of $\left[L^{2}(\Omega)\right]^{2}$ and $\left[H_{0}^{1}(\Omega)\right]^{2}$, respectively. Then problem (2) can be written in the following form:

$$
\left\{\begin{array}{l}
\text { Find } w \in K_{g} \cap\left[H_{0}^{1}(\Omega)\right]^{2} \text { such that } \tag{3}\\
a(w+g, v-w)+((f, v-w)) \geq 0 \quad \forall v \in K_{g} \cap\left[H_{0}^{1}(\Omega)\right]^{2} .
\end{array}\right.
$$

This problem admits a unique solution. Indeed, it is easy to see that $K_{g} \cap\left[H_{0}^{1}(\Omega)\right]^{2}$ is a non empty closed convex set of $\left[H_{0}^{1}(\Omega)\right]^{2}$. The application $h:\left[H_{0}^{1}(\Omega)\right]^{2} \rightarrow \mathbb{R}$ defined by $h(v):=a(g, v)+((f, v))$ is a continuous linear form on $\left[H_{0}^{1}(\Omega)\right]^{2}$. Moreover the bilinear form $a(\cdot, \cdot)$ defines an inner product on $\left[H_{0}^{1}(\Omega)\right]^{2}$, then it is continuous and coercive on $\left[H_{0}^{1}(\Omega)\right]^{2}$. Hence problem (3) admits a unique solution (see [9,3]).

https://daneshyari.com/en/article/8960198

Download Persian Version:

https://daneshyari.com/article/8960198

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: med_bouchlaghem@yahoo.com (M. Bouchlaghem), mermri@hotmail.com (E.B. Mermri).

