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a b s t r a c t

The first order system least squares Legendre and Chebyshev spectral method for two
dimensional space linear elasticity is investigated. The drilling rotation is defined as a new
variable and the linear elasticity equation is supplemented with an auxiliary equation. The
weighted L2-norm least squares principle is applied to a stress–displacement–rotation.
It is shown that the homogeneous least squares functional is equivalent to weighted
H1-norm like for stress andweightedH1-norm for displacement and rotation. Thisweighted
H1-norm equivalence is λ-uniform. Spectral convergence for both Legendre and Chebyshev
approaches are given alongwith some numerical experiments. The generalization for three
dimensional spaces is also provided.
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1. Introduction

In this paper, we consider the linear elasticity problem in two dimension space which consists of the constitutive and
equilibrium equations of the form{

E(u) − ℓ σ = 0, inΩ,
∇ · σ + f = 0, inΩ,
u = 0, on ∂Ω,

(1.1)

where σ is stress tensor, E(u) is strain tensor, f is body force and u is displacement. HereΩ ⊆ R2 is an open bounded domain
with boundary ∂Ω. Denote the Lamé constants by

λ =
Eν

(1 + ν)(1 − 2ν)
, and µ =

E
2(1 + ν)

,

where E > 0 is the modulus of elasticity, ν ∈ (−1, 1/2) is the Poisson ratio of the elastic material. We also have

ℓ =
1
2µ

(
I −

λ

2λ+ 2µ
bbt), with b = (1, 0, 0, 1)t ,

and

ℓσ =
1
2µ

⎡⎢⎣
2µ+ λ

2λ+ 2µ
σ11 −

λ

2λ+ 2µ
σ22 σ12

σ12 −
λ

2λ+ 2µ
σ11 +

2µ+ λ

2λ+ 2µ
σ22

⎤⎥⎦ .
Numerical approximation of the linear elasticity is a challenging problem in the numerical analysis community especially

when the material tends to become incompressible, in the other words, the Lamé constant λ tends to infinity for fixed Lamé
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constant µ, or the Poisson ratio ν tends to 0.5. A plethora of methods have been investigated to approximate the solution
of (1.1). The linear finite element method [1], the nonconforming mixed multigrid method [2], the discontinuous Galerkin
methods [3], and virtual elements [4] to name a few.

Least squares finite element methods [5–12] have also been applied to approximate the solution of linear elasticity (1.1).
The authors in [6,7] introduced the displacement flux as a new variable and two-stage algorithms used to approximate the
solution of the least squares functional defined based on L2-norm. They first solve the displacement gradient and then solve
the displacement itself. The least squares method based on a discrete minus one inner product is also investigated in [5].
Cai and Starke used the first order system (1.1) supplemented with the symmetry of the stress tensor σ = σt in [9]. This
approach does not apply for incompressible materials and requires effective discretizations and efficient solvers for the pure
displacement problem when materials are nearly incompressible. They removed symmetry constraint of stress in [10] and
showed the ellipticity and continuity of the least squaresmethod. The authors in [12,13]modified the least squares functional
in [10] to improve the momentum balance. In the above works, the variables of interest are displacement and stress. Jiang
and Wu [11] introduced drilling rotation as a new variable and provided some numerical experiments.

The aim of this paper is to investigate the first order system least squares method for the pure displacement problem
in linear elasticity based on displacement–stress–rotation formulation. However, instead of applying the finite element
approach, pseudo-spectral Legendre and Chebyshevmethods are used. Pseudo-spectral least squaresmethods have received
much attention recently and have been applied to different partial differential equations [14–19]. In this work we combine
the spectral accuracy of the pseudo-spectral method [20] and the least squares approach [21] with its advantages to
approximate the solution of (1.1). To this end, following the idea of [11], we define the drilling rotation which is the same as
vorticity in fluid mechanic, as a new variable. The first order system Eq. (1.1) is then supplemented with the drilling rotation
definition and another first order equation containing the derivative of the rotation. The least squares functional is defined to
be the sum of the L2ω-norm of residual of the first order system. The least squares functional, underH2

ω regularity assumption,
is equivalent to H1

ω-norm like for stress and H1
ω-norm for displacement and rotation. It should be noted that this H1

ω-norm
equivalence is λ-uniform, which guarantees the spectral accuracy of the method independent of λ. Spectral convergence of
the method for both Legendre and Chebyshev along with some numerical examples are shown.

The content of this paper is organized as follows. In Section 2, we provide preliminaries that will be used in subsequent
sections. In Section 3, least squares functional is defined and its well-posedness is proven. Section 4 is devoted to discrete
least squares Legendre and Chebyshev methods as well as their spectral convergence. The method is illustrated numerically
in Section 5. The extension for three dimensional spaces is provided in Section 6. We conclude the paper in Section 7.

2. Preliminaries

Preliminaries are provided in this section, briefly. We refer the reader to [14,15,22] for more details. We use the standard
notations and definitions for the weighted Sobolev spaces Hs

w(D), s ≥ 0 where D = [−1, 1]2. The weight function is
w(x) = ŵ(x)ŵ(y) where ŵ(t) = 1 is the Legendre weight function and ŵ(t) =

1√
1−t2

is the Chebyshev weight function. The

space H0
w(D) indicates L2w(D), in which the norm and inner product will be denoted by ∥ · ∥w,D and (·, ·)w,D, respectively. Let

H1
0,w(D) be the subspace of H1

w(D), consisting of the functions which vanish on the boundary. For the Legendre case, we will
simply write the notations without the subscripts w. Denote by H−1

w (D) the dual space of the space H1
0,w(D) equipped with

its norm

∥u∥−1,w,D := sup
φ∈H1

0,w (D)

(u, φ)w,D
∥φ∥1,w,D

. (2.1)

Let

Hw(div,D) = {v ∈ L2w(D)
2

: ∇ · v ∈ L2w(D)},

Hω(curl,D) = {v ∈ L2ω(D)
2

: ∇ × v ∈ L2ω(D)},

which are Hilbert spaces under the respective norm

∥v∥ω,div,D =
(
∥v∥2

ω,D + ∥∇ · v∥2
ω,D

)1/2
,

and

∥v∥ω,curl,D =
(
∥v∥2

ω,D + ∥∇ × v∥2
ω,D

)1/2
.

Denote the space of all polynomials of degree less than or equal to N by PN . Let {ξi}
N
i=0 be the Legendre–Gauss–Lobatto

(LGL) or Chebyshev–Gauss–Lobatto (CGL) points on [−1, 1] such that −1 =: ξ0 < ξ1 < · · · < ξN−1 < ξN := 1, with
the corresponding quadrature weights {wi}

N
i=0. For Legendre case, {ξi}Ni=0 are the zeros of (1 − t2)L′

N (t) where LN is the Nth
Legendre polynomial and the corresponding quadrature weights {wi}

N
i=0 are given by

w0 = wN =
2

N(N + 1)
, wj =

2
N(N + 1)

1
[LN (ξj)]2

, 1 ≤ j ≤ N − 1.
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