## ARTICLE IN PRESS

Computers and Mathematics with Applications **I** (**IIII**)

Contents lists available at ScienceDirect



Computers and Mathematics with Applications



© 2018 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/camwa

## Several new regularity criteria for the axisymmetric Navier–Stokes equations with swirl

### Zujin Zhang

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, Jiangxi, PR China

#### ARTICLE INFO

ABSTRACT

 $\omega^{\theta} = \partial_z u^r - \partial_r u^z, \partial_r u^r, \partial_z u^z \text{ or } \partial_r u^{\theta}.$ 

Article history: Received 14 January 2018 Received in revised form 21 May 2018 Accepted 23 June 2018 Available online xxxx

Keywords: Axially symmetric function Navier–Stokes equations Weighted spaces

#### 1. Introduction

This paper studies the three-dimensional Navier-Stokes equations, which in Eulerian coordinates read

|   | $\int \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \Delta \boldsymbol{u} + \nabla \boldsymbol{\Pi} = \boldsymbol{0},$ |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| • | $\{ \nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \}$                                                                                               | (1) |
|   | $\boldsymbol{u}(0) = \boldsymbol{u}_0,$                                                                                                             |     |

In this paper, we consider the axisymmetric Navier–Stokes equations with swirl, and show

that the global regularity is ensured if we add some (weighted) integrable conditions on

where

 $u = (u^1, u^2, u^3) = u^1 e_1 + u^2 e_2 + u^3 e_3$ 

is the fluid velocity field,  $\Pi$  is a scalar pressure, and  $\mathbf{u}_0$  is the prescribed initial data satisfying the compatibility condition  $\nabla \cdot \mathbf{u}_0 = 0$  in the distributional sense.

In the last century, Leray [1] and Hopf [2] have proven that (1) possesses at least one global weak solution for initial data of finite energy. However, the issue of its regularity and uniqueness is a challenging open problem in mathematical fluid dynamics. Pioneered by Serrin [3] and Prodi [4], there exist many sufficient conditions to ensure the smoothness of the solution. Particularly, we have the following regularity criterion (see [3–5] for example)

$$\boldsymbol{u} \in L^{\alpha}(0,T;L^{\beta}(\mathbb{R}^{3})), \quad \frac{2}{\alpha} + \frac{3}{\beta} = 1, \quad 3 \leq \beta \leq \infty.$$
(2)

In this paper, we shall study the axisymmetric solutions of (1). A solution is axisymmetric if the velocity field can be represented as

 $\boldsymbol{u} = \boldsymbol{u}^{r}(t, r, z)\boldsymbol{e}_{r} + \boldsymbol{u}^{z}(t, r, z)\boldsymbol{e}_{\theta} + \boldsymbol{u}^{z}(t, r, z)\boldsymbol{e}_{z},$ (3)

*E-mail address:* zhangzujin361@163.com.

https://doi.org/10.1016/j.camwa.2018.06.035 0898-1221/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Z. Zhang, Several new regularity criteria for the axisymmetric Navier–Stokes equations with swirl, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.06.035.

## ARTICLE IN PRESS

#### Z. Zhang / Computers and Mathematics with Applications I (IIII) III-III

where

$$\begin{aligned} \boldsymbol{e}_r &= \left(\frac{x_1}{r}, \frac{x_2}{r}, 0\right) = \left(\cos\theta, \sin\theta, 0\right), \\ \boldsymbol{e}_\theta &= \left(-\frac{x_2}{r}, \frac{x_1}{r}, 0\right) = \left(-\sin\theta, \cos\theta, 0\right), \\ \boldsymbol{e}_z &= (0, 0, 1) \end{aligned}$$

are the basis of  $\mathbb{R}^3$  in the cylindrical coordinates. Here,  $u^r$ ,  $u^{\theta}$  and  $u^z$  are called the radial, swirl (or azimuthal) and axial components of u respectively. Thus the system (1) can be equivalently reformulated as

$$\begin{cases} \frac{D}{Dt}u^{r} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}}\right)u^{r} - \frac{(u^{\theta})^{2}}{r} + \partial_{r}\Pi = 0,\\ \frac{\tilde{D}}{Dt}u^{\theta} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}}\right)u^{\theta} + \frac{u^{r}u^{\theta}}{r} = 0,\\ \frac{\tilde{D}}{Dt}u^{z} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r}\right)u^{z} + \partial_{z}\Pi = 0,\\ \partial_{r}(ru^{r}) + \partial_{z}(ru^{z}) = 0,\\ (u^{r}, u^{\theta}, u^{z})(0) = (u^{r}_{0}, u^{\theta}_{0}, u^{z}_{0}), \end{cases}$$
(4)

where

$$\frac{D}{Dt} = \partial_t + u^r \partial_r + u_z \partial_z.$$
(5)

Taking curl of  $(1)_1$  and denoting by

$$\boldsymbol{\omega} = \nabla \times \boldsymbol{u} = \omega^r \boldsymbol{e}_r + \omega^\theta \boldsymbol{e}_\theta + \omega^z \boldsymbol{e}_z \tag{6}$$

with

$$\omega^{r} = -\partial_{z}u^{\theta}, \quad \omega^{\theta} = \partial_{z}u^{r} - \partial_{r}u^{z}, \quad \omega^{z} = \partial_{r}u^{\theta} + \frac{u^{\theta}}{r}, \tag{7}$$

we may rewrite the vorticity equation

$$\partial_t \boldsymbol{\omega} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{\omega} - (\boldsymbol{\omega} \cdot \nabla) \boldsymbol{u} - \Delta \boldsymbol{\omega} = \boldsymbol{0}, \tag{8}$$

as

$$\begin{cases} \frac{D}{Dt}\omega^{r} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}}\right)\omega^{r} - (\omega^{r}\partial_{r} + \omega^{z}\partial_{z})u^{r} = 0,\\ \frac{\tilde{D}}{Dt}\omega^{\theta} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}}\right)\omega^{\theta} - \frac{2u^{\theta}\partial_{z}u^{\theta}}{r} - \frac{u^{r}\omega^{\theta}}{r} = 0,\\ \frac{\tilde{D}}{Dt}\omega^{z} - \left(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r}\right)\omega^{z} - (\omega^{r}\partial_{r} + \omega^{z}\partial_{z})u^{z} = 0. \end{cases}$$
(9)

When the swirl component  $u_0^{\theta}$  of the initial data vanishes, (4) has a global unique regular solution [6–8]. However, if  $u_0^{\theta} \neq 0$ , then it is open for its global regularity as the full Navier–Stokes system. And thus, tremendous efforts and interesting progresses have been made on the regularity problem, see [9–19] and references cited therein. Now let us recall some regularity criteria which are relevant to our results. By [20, Theorem 1.1, Remark 1.3], we have the following two regularity conditions:

$$r^{d}u^{\theta} \in L^{\alpha}(0, T; L^{\beta}(\mathbb{R}^{3})), \ \frac{2}{\alpha} + \frac{3}{\beta} = 1 - d, \ \frac{3}{1 - d} < \beta \leq \infty, \ 0 \leq d < 1;$$
 (10)

$$r^{d}u^{\theta} \in L^{\alpha}(0,T;L^{\beta}(\mathbb{R}^{3})), \ \frac{2}{\alpha} + \frac{3}{\beta} = 1 - d, \ \frac{3}{1 - d} < \beta \leqslant \infty, \ -1 \leqslant d < 0,$$

$$(11)$$

if  $ru_0^{\theta} \in L^{\infty}$ . Under this same condition on the initial data, we have the following three regularity criteria (see [20, Theorem 1.4, Corollary 1.5, Theorem 1.3] respectively)

$$r^{d}u^{z} \in L^{\alpha}(0,T;L^{\beta}(\mathbb{R}^{3})), \ \frac{2}{\alpha} + \frac{3}{\beta} = 1 - d, \ \frac{3}{1 - d} < \beta \leq \infty, \ 0 \leq d < 1,$$
(12)

$$ru^{z} \in L^{\infty}(0,T;L^{\infty}(\mathbb{R}^{3})).$$
(13)

Please cite this article in press as: Z. Zhang, Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.06.035.

2

Download English Version:

# https://daneshyari.com/en/article/8960207

Download Persian Version:

https://daneshyari.com/article/8960207

Daneshyari.com