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a b s t r a c t

Smoothedparticle hydrodynamics (SPH) has beenwidely applied to flowswith free surface,
multi-phase flow, and systems with complex boundary geometry. However, it has been
shown that SPH suffers from transverse instability when applied to simple wall-bounded
shear flows such as Poiseuille and Couette flows at moderate and high Reynolds number,
Re ≳ 1, casting the application of SPH to practical situations into doubt, where the
Reynolds number is frequently large. Here, we consider Poiseuille flows for a wide range of
Reynolds number and find that the documented instability of SPH can be avoided by using
appropriate ratio of smoothing length to particle spacing in combination with a density re-
initialization technique, which has not been systematically investigated in simulations of
simple shear flows.We also probe the source of the instability and point out the limitations
of SPH for wall-bounded shear flows at high Reynolds number.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Originally, smoothed particle hydrodynamics (SPH) was proposed to solve astrophysical problems [1,2]; however, by now
there is a much wider range of applications. Because of its meshless and particle-based nature, it is frequently applied to
fluid flows with free surfaces [3–6], multi-phase systems [4,3,7,8], and systems with complex boundary geometry [9]. Very
recently it was also applied to particle laden flow by fully resolving the flow around moving solid particles [10,11] and
wall-bounded turbulence [12]. For a comprehensive review on the fundamentals and applications of SPH see [13–15].Within
the SPH paradigm, there are two different approaches to handle incompressible flow problems, namely incompressible SPH
(ISPH) which imposes incompressibility by solving the pressure Poisson equation [4,16–20] and weekly compressible SPH
(WCSPH), which exploits an equation of state to relate density and pressure and approximately imposes the incompressibil-
ity by assigning high speed of sound. Mainly because of its pure Lagrangian nature and computational simplicity, WCSPH
was extensively used for various flow simulations, e.g. [3,4,9,21,10,11,5,6,12]. In this paper, we refer to WCSPH as SPH and
focus on its application to incompressible wall-bounded shear flow.

For shear flow at low Reynolds numbers, SPH yields satisfactory results [9,10,21–23]. However, for larger Reynolds
numbers, SPH fails, in particular in simulations of simple shear flow [24,22,25,23]. Imaeda & Inutsuka [24] argued that in
standard SPH the particle velocity cannot exactly represent the fluid velocity, therefore, density error gradually increases
and invalidates the simulation results. Similar to a recent transport-velocity formulation for SPH [8], the solution provided
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in [24] relies on two velocities, i.e. the particle and fluid velocities. However, the Lagrangian property of SPH is lost in those
formulations.

For plane Poiseuille flow, Basa et al. [25] investigated the performance of various viscous force formulations, boundary
condition implementations, and particle inconsistency corrections in SPH and observed that the failure of themethod cannot
be avoided even at a very low Reynolds number, Re ≈ 1. The authors identified the inherent inability of SPH to suppress
transverse fluctuations as the source of the failure, in agreement with earlier studies [22,26], and termed the instability as
transverse instability. The same source of failure was found byMeister et al. [23] who considered plane Poiseuille and Couette
flows. Although they showed a convergence for small Reynolds number, the numerical error was still considerable (≈ 10%
for Re=65). These findings also suggested that the specific choice of kernel function is irrelevant to the failure of the method,
as the same type of instability occurswith different kernel functions (B-spline kernel in [25] and quintic spline kernel in [23]).
Besides, it is also concluded by these authors that regular initial particle distributions are intrinsically unstable with respect
to transverse fluctuations in Poiseuille and Couette flows [23].

The appearance of the instability poses fundamental limitation of the application of SPH to wall-bounded shear flows.
We identify the sensitivity of the particle discretization accuracy on particle distribution as the source of the instability and
propose strategies to achieve a satisfactory performance of classical SPH simulations. In this paper we also systematically
study the effects of method parameters, background pressure, initial particle configurations, and a density re-initialization
technique on the performance of SPH for simple shear flow and pipe flow at Reynolds numbers between Re ≈ 0.01 and 100.

2. SPH methods

SPH is a Lagrangian approach to solve the Navier–Stokes equations numerically using discrete quasi-particles. The
discretization scheme is further elaborated in the following sub-sections.

2.1. Continuity equation

The evolution of density can be formulated using the continuity equation
dρ
dt

= −ρ∇ · v⃗, (1)

where ρ and v⃗ are the fluid density and velocity, respectively. In the formulation of SPH, Eq. (1) reads
dρa

dt
= ρa

∑
b

mb

ρb
(v⃗a − v⃗b) · ∇aWab , (2)

where ρa is the density of particle a,mb is the mass of particle b and ∇a denotes the derivative with respect to the position r⃗a
of particle a.W is the kernel function, andWab ≡ W

(
r⃗a − r⃗b, h

)
. In this paper, the cubic spline kernel function given in [10]

with a compact support is employed, which reads

W
(
r⃗, h

)
=

1
4πh3

⎧⎨⎩(2 − q)3 − 4(1 − q)3, 0 ≤ q < 1,
(2 − q)3, 1 ≤ q < 2,
0, q ≥ 2,

(3)

where q ≡
⏐⏐r⃗ ⏐⏐ /h. Alternatively, the density can also be directly obtained using

ρa =

∑
b

mbWab . (4)

Both types of density updating schemes, Eqs. (2) and (4), yield similar results [25]; however, usually the former is preferred
as it produces smoother density fields in the vicinity of boundaries [10,21]. In this paper, we adopt the continuity equation
Eq. (2) together with a density re-initialization technique using Eq. (4) [4,10].

2.2. Momentum equation

The momentum equation reads
dv⃗
dt

= −
1
ρ

∇p +
µ

ρ
∇

2v⃗ + f⃗ , (5)

where p is the pressure and f⃗ denotes the external body force density. Regarding discretization, we apply the gradient and
viscous term formulation given in [7,9]:(

−
1
ρ

∇p
)

a
= −

1
ma

∑
b

(V 2
a + V 2

b )p̃ab∇aWab (6)(
µ

ρ
∇

2v⃗

)
a

=
1
ma

∑
b

(
V 2
a + V 2

b

)
µ̃ab

r⃗ab · ∇aWab

|r⃗ab|
2
+ ϵh2

(v⃗a − v⃗b) (7)
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