
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

50 million atoms scale molecular dynamics modelling on a single consumer
graphics card

Gaobo Xiao, Mingjun Ren⁎, Haibo Hong
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China

A R T I C L E I N F O

Keywords:
Molecular dynamics
parallel computing
Graphics processing unit (GPU)
Compute unified device architecture (CUDA)
dynamic cell list

A B S T R A C T

This paper presents a dynamic cell-list method for realizing large scale molecular dynamics (MD) simulations
with more than 50 million atoms on a single consumer graphics card. It adapts the cell-list algorithm by in-
troducing an efficient two-step atom location scheme and a dynamic memory allocation scheme such that only
those cells containing atoms consume device memory. In addition, a large amount of memory is saved since it
does not use the neighbour list. The computational efficiency is improved by reducing the memory loading times
and maximizing coalesced memory access as compared to methods utilizing neighbour lists, since memory
bandwidth is becoming the bottle-neck of the latest GPUs. As a result, MD simulations with more than 50 million
atoms utilizing advanced three-body interaction potential are made possible on a consumer graphics card with
just 11 GB of graphics memory. The proposed framework is designed to run totally on the graphics card, with all
the data stored in the graphics memory to avoid the time-consuming data transfer between host and device. It
achieves 2.5 times the speed and 20 times the atom number of the latest Lammps GPU package on the NVIDIA
GTX 1080Ti GPU. The proposed framework is expected to help adapt existing MD packages for supporting large
scale MD simulations on personal desktops and thereby extend MD to a wider range of researchers and engineers.

1. Introduction

Molecular dynamics (MD) has been a powerful tool for studying the
atomic scale phenomena in many fields like theoretical physics [1],
material science [2,3], biochemistry [4] and biophysics [5]. The major
problem with this method is its huge demand in computations [6],
limiting the time and spatial scales that can be handled effectively.

A significant advance in scientific computing in recent years is the
development of general purpose computing on graphics processing unit
(GPU) [7,8], especially the introducing of Compute Unified Device
Architecture (CUDA) [9,10], a parallel computing platform and appli-
cation programming interface (API) model created by NVIDIA cor-
poration. CUDA allows researchers and engineers to take advantage of
the massive computing power of the thousands of computing cores on
NVIDIA GPUs, bringing tens to hundreds of times of speedup for sci-
entific computing as compared to implementations on CPUs [11].
OpenCL (open computing language) is another framework that supports
parallel programming for GPU and enables general purpose computing
on GPUs from other vendors [12].

Many MD codes, e.g. LAMMPS [12], AMBER [13], and Gromacs
[14], have added support for GPU acceleration by providing options of
transferring the computational intensive parts down to the GPU in each

time step. Since the back and forth transferring of data between host
and the device is inefficient, a number of MD codes have been devel-
oped from scratch to harness the full computational power of GPU by
implementing the computing process entirely on GPU, including RUMD
[15], OpenMM [16,17], crystal MD [18], ACEMD [4], HAL's MD [19],
and HOOMD-Blue [20].

A common point of these GPU implementations of MD is that they
focused on the boost of computational speed for small to medium sized
systems on single GPU, i.e. from thousands to a few millions of atoms,
and resorted to multiple GPU systems, e.g. computer clusters [21,22],
for handling systems with more atoms. What is less studied is the MD
simulation of large scale systems on a single GPU, e.g. systems with tens
of millions of atoms. This makes it difficult for many researchers and
engineers, for whom access to supercomputers is inconvenient, to in-
vestigate those problems that require a modelling scale from several
tens to a few hundreds of nanometers by MD simulation [23]. Examples
include ultra-precision machining [24], atomic force microscopy (AFM)
[23], and nano electro-mechanical systems (NEMS) [25], in which in-
tensive deformation happens on the scale of several tens to around a
hundred nanometers. Phenomena on this scale is difficult to be ob-
served by experimental techniques, or to be modelled by continuum
methods like finite element method (FEM) [26]. MD is the right method

https://doi.org/10.1016/j.advengsoft.2018.08.004
Received 26 June 2018; Received in revised form 29 July 2018; Accepted 12 August 2018

⁎ Corresponding author:
E-mail address: renmj@sjtu.edu.cn (M. Ren).

Advances in Engineering Software xxx (xxxx) xxx–xxx

0965-9978/ © 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Xiao, G., Advances in Engineering Software (2018), https://doi.org/10.1016/j.advengsoft.2018.08.004

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2018.08.004
https://doi.org/10.1016/j.advengsoft.2018.08.004
mailto:renmj@sjtu.edu.cn
https://doi.org/10.1016/j.advengsoft.2018.08.004


for modelling phenomena on this scale, but its application is very
limited due to the high costs of supercomputers [6].

This study presents a framework for implementing large scale MD
simulations with tens of millions of atoms on a single graphics card.
This framework adapts the cell-list method by introducing an efficient
two-step atom location scheme and a dynamic memory allocation
scheme to save the device memory usage. The computational efficiency
is also improved due to the reduced times of memory loading and
coalesced memory access as compared to methods utilizing neighbour
lists. As a result, MD simulation with more than 50 million atoms with
advanced three-body interaction potential is realized on a single GPU
with only 11 GB of graphics memory. Benchmark tests show that the
proposed framework achieves 2.5 times the speed and 20 times the
particle number as compared to the latest Lammps GPU package [27]
on the same GPU hardware. As a demonstration of potential applica-
tion, the codes are used to simulate the nano-grinding of SiC under
practical cutting depth to visualize the crack formation during the
material removal process. It is expected that the proposed framework
can help adapt existing MD packages to support large scale MD simu-
lations on desktop computers and thereby extend MD modelling to a
wider range of applications and a wider group of researchers and en-
gineers.

2. Review of existing methods

Though both CUDA and OpenCL support general purpose com-
puting on GPU and they are similar to each other in principles, cur-
rently CUDA is more friendly to developers in terms of development
tools and device drivers [12]. In this study the proposed MD framework
was implemented using the CUDA API, and the following context would
use the CUDA terminologies for describing the technical details.

The major concern for implementing large scale MD algorithms is to
reduce the computational complexity from O(N2) to O(N) by limiting
the range of force evaluation to a small number of particles for each
particle [28,29], usually within a cut-off distance (rc) beyond which the
interactions are small enough to be neglected [30]. For implementa-
tions on CPU, this is usually done by adopting a linked-cell algorithm or
a combination of neighbor list and linked-cell [10]. For GPU im-
plementations, the linked-cell algorithm is not appropriate since it
means a lot of random memory operations which would dramatically
decrease the performance [10]. Therefore, most GPU implementations
adopt a cell-list algorithm [4,31] or a combination of cell-list and
neighbor list [1,6,7,10,12,15,28,30]. There are also some other algo-
rithms for implementing MD on GPU, targeting MD simulations in
specific fields. For example, OpenMM adopted a block list algorithm to
speed up the MD simulation of biosystems [16], for which the time
length other than the number of particles is the primary concern [4].

For the existing cell-list algorithms or the combination of cell-list
and neighbor list on GPU, a limitation is that the memory utilization is
not optimized and as a result the maximum number of particles is
limited [31]. For the cell-list algorithms, the atoms are located to a grid
of cells with edge length equal to or slightly larger than rc at each time
step, such that the search of interacting atoms for each atom can be
constrained to the 27 cells around that atom [32]. Usually a fixed
amount of device memory enough to accommodate the maximum
possible number of atoms for a single cell is allocated for each cell, for
the purpose of allowing coalesced memory access [10]. It is evident that
for systems with a lot of empty cells, a large amount of memory would
be wasted [31]. Unfortunately, many systems contain highly irregular
geometries and experience significant deformations during the simu-
lations, which means that the number of cells to be allocated need to be
far more than those really contain atoms. For the combination of cell-
list and neighbor list algorithm, the neighbor lists further require a
large amount of memory [12]. Assuming that the length of neighbor list
for each atom is 250 and only the IDs of the neighbor atoms are stored
in the neighbor list, this means 1000 bytes for the neighbor list of each

atom and 1 GB for 1 million atoms. This makes it difficult to model
large systems on single GPUs since the device memory is usually lim-
ited.

Though the adoption of neighbor list reduces the computational
demand by decreasing the number of atoms that need to be checked for
each atom, it poses heavy challenges to the memory bandwidth [12].
On one hand, it is difficult to reduce memory loading times by taking
advantage of the shared memory, since every atom maintains its own
neighbor list. Assuming the length of neighbor list is 250, each atom
would need to be read from the device memory for 250 times during the
force computation, while for the cell-list method one atom only needs
to be read for 27 times. On the other hand, the loading of the positions
of neighbor atoms is an uncoalesced memory access which would de-
teriorate the memory throughput. Therefore, it is hard to tell if the
benefits from reduced computational demand can offset the loss from
increased memory loading times and reduced throughput, especially
when the memory bandwidth is becoming the bottle-neck in improving
the computational capability of GPUs. Fig. 1 summarizes the evolution
of computational power and memory bandwidth of NVIDIA's flagship
GTX GPUs [33-39] in the past decade. It can be seen that the memory
bandwidth in 2017 was only about 3 times of that in 2008, whereas the
computational power has experienced a giant increase of over 11 times.
Taking this factor into consideration, it is necessary to re-evaluate the
effectiveness of the combination of cell-list and neighbor list on the
latest GPUs.

3. Methodology

3.1. . Data structure

Though the proposed framework belongs to the cell-list type, its
data structure is quite different with previous studies [31,40] for the
purpose of enabling dynamic allocation. There are basically three types
of data in the device memory as shown in Fig. 2, i.e. (i) the position,
velocity and force lists, (ii) a list (“all cells list”) of structs storing the
basic information of each cell in the simulation box, and (iii) a list
(“atom cells list”) of structs that store the IDs and positions of atoms in
each cell containing atoms, and a list (“atom cell ID list”) of the IDs of
those cells containing atoms.

The position, velocity and force list just simply use the float4 da-
tatype of CUDA. As the same with previous studies, the float4 is
adopted instead of float3 to align the device memory to allow coalesced
memory access, at the cost of wasting 4 bytes of memory space for each
atom. In practice, the w component of the position is used to store a
value representing the atom species when handling multi-element sys-
tems. The lengths of these lists are equal to the total number of atoms in
the system, including ghost atoms when periodic boundary is applied.
The sequence of the atoms in these lists is kept constant during the
simulation, since the proposed method does not need to re-arrange the

Fig. 1. Evolution of computation power and memory bandwidth of Nvidia
GPUs

G. Xiao et al. Advances in Engineering Software xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/8960242

Download Persian Version:

https://daneshyari.com/article/8960242

Daneshyari.com

https://daneshyari.com/en/article/8960242
https://daneshyari.com/article/8960242
https://daneshyari.com

