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A B S T R A C T

This paper proposes an optimal two-relaxation-time (OTRT) lattice Boltzmann equation (LBE) for solid-liquid
phase change. By using the Chapman-Enskog expansion, the OTRT LBE can recover the enthalpy-based energy
governing equation up to second-order accuracy. Moreover, a detailed theoretical analysis proves that by
keeping an optimal relation between the two relaxation times, the OTRT LBE can effectively eliminate the
unphysical numerical diffusion of arbitrary DmQn (m dimensions and n discrete velocities) lattice Boltzmann
models for both one-phase and two-phase melting problems. Five test cases including one-dimensional to three-
dimensional solid-liquid phase change problems are calculated to validate the OTRT LBE. The results show that
OTRT LBE can effectively eliminate the unphysical numerical diffusion induced by the discontinuous heat flux
across the phase interface, for one-dimensional to three-dimensional solid-liquid phase change problems.

1. Introduction

Solid–liquid phase change is a common physical phenomenon in
nature and relates to many important engineering applications [1–3].
Two key features of solid-liquid phase change problems are: (1) the
phase interface, which separates the solid and liquid phases, evolves
with time; (2) the phase interface keeps a constant temperature during
phase change owing to latent heat. It is challenging to track the phase
interface position in advance and couple the phase interface evolution
with heat transfer. Moreover, the different thermophysical properties of
the solid and liquid phases also increase the difficulty of numerical si-
mulation.

To track the phase interface during solid-liquid phase change, two
kinds of equations, which are the phase-field equations [4,5] based on
Ginzburg-Landau theory and the energy equations based on energy
conservation, have been proposed. In the phase–field equations, the
order parameter, which marks the phase distribution and smoothly
varies across the diffusive phase interface, is introduced to implicitly
track the phase distribution. The temperature field and the phase field
are calculated separately. Compared to the phase-field equations, the
energy equations are simpler in scheme, therefore have been widely
used to simulate solid-liquid phase change. To solve the energy equa-
tions, some numerical methods such as finite difference method (FDM)
[6,7], control volume method (CVM) [8] and lattice Boltzmann method

(LBM) have been proposed.
As an alternative numerical technique, the lattice Boltzmann

method (LBM) has drawn increasing attention for its simplicity and
efficiency in the simulations of multiphase flow [9–11], conjugate heat
transfer [12,13] and solid–liquid phase change. The LBEs for solid–li-
quid phase change can be classified into two major groups which are:
(1) the temperature-based LBEs [14–22] to directly solve the tem-
perature field and (2) the enthalpy-based LBEs [23–29] to solve the
enthalpy field then get the temperature field indirectly. In the tem-
perature-based LBEs, the latent heat is considered as a variable heat
source term that keeps the temperature of the phase interface constant.
Owing to the implicit latent enthalpy term, the heat source term can
only be updated by adding some assumptions or a number of iterations,
which bring additional numerical error and complexity to the numer-
ical simulations. In addition, all the temperature-based LBEs mentioned
above do not consider the difference in heat capacities of the solid and
liquid phases. However, the heat capacities of the two phases are
generally different and have effect on the heat transfer process before
phase change starting.

In the enthalpy-based LBEs, the temperature field is solved in-
directly in the form of enthalpy and the phase interface is implicitly
tracked by the enthalpy distribution. The corresponding energy gov-
erning equation without additional heat source term can be described
as [24].
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where ρ, cp, T , →u , λ, L, fL are the density, specific heat, temperature,
velocity, thermal conductivity, latent heat of melt and liquid fraction,
respectively. c Tp is the sensible enthalpy and f LL is the latent enthalpy.
The convection term ∇⋅ →ρLf u( )L , which is induced by the flow of two-
phase zone, can be neglected for the isothermal phase change where the
two-phase zone acts like solid [2,6,24].

To solve Eq. (1), some enthalpy-based LBEs have been proposed.
Chatterjee and Chakraborty [23] developed a hybrid lattice Boltzmann
methodology for simulating convection–diffusion transport processes
pertinent to melting and solidification problems. The proposed LBE
takes compression work and viscosity dissipation into account and
considers the latent enthalpy as an additional heat source term. Thus,
the implicit latent enthalpy term needs to be calculated via iteration
procedure [30]. Another research of Chatterjee [25] is similar. The
iteration procedure for enthalpy updating is employed to reduce the
difference between the enthalpy predicted by the corresponding evo-
lution equation and the enthalpy dictated by phase-change considera-
tions.

The iteration procedure of updating the latent enthalpy should be
removed, because it significantly reduces the computational efficiency.
By combining the latent heat source term ∂

∂
ρLf

t
( )L into the transient term
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( )p , Huang et al. [24] proposed a new total enthalpy-based LB model.
The recovered governing equation is
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where H is the combination of sensible enthalpy c Tp and latent en-
thalpy f LL , i.e., = +H c T f Lp L . The total enthalpy H is solved by LBE,
and then the temperature can be determined by the total enthalpy.
Thus, the implicit latent enthalpy term can be eliminated. All the terms
in the governing equation, Eq. (2), are explicit now, which makes this
model much easier to solve and reduces the numerical error.

Up to now, all the enthalpy-based LBEs mentioned above do not
consider the different heat capacities of the solid and liquid phases as
well. Recently, Huang and Wu [27] made an important achievement in
simulating solid-liquid phase change. They proposed a MRT LBE that
can recover Eq. (2) and considers the different heat capacities of the
solid and liquid phases. Furthermore, they analyzed the appearance of
unphysical numerical diffusion induced by the discontinuous heat flux
across the interface in detail, and proved that the unphysical numerical
diffusion of two-dimensional melting problems can be eliminated by
adjusting the relaxation parameters of D2Q9 MRT model. Following
their work, some researchers [26,28] extended the two-dimensional
MRT model to three dimensions. Especially, Li and He [28] illustrated
how to eliminate the unphysical numerical diffusion of one-phase
melting for D3Q7 model in three dimensions.

Obviously, it is not convenient to adjust the relaxation parameters
for different DmQn MRT models to eliminate the unphysical numerical
diffusion. In the present paper, an OTRT LBE is proposed for simulating
solid-liquid phase change. By using the Chapman-Enskog expansion,
the enthalpy-based energy governing equation can be recovered up to
second-order accuracy. Furthermore, detailed theoretical analysis
proves that the OTRT LBE can effectively eliminate the unphysical
numerical diffusion of arbitrary DmQn lattice Boltzmann models for
both one-phase and two-phase solid-liquid phase change problems. This
feature makes the proposed OTRT LBE flexible to simulate solid-liquid
phase change from one dimension to three dimensions. It is equivalent
to SRT model in simplicity, but has the same effect as MRT model on
eliminating the unphysical numerical diffusion.

The rest part of this paper is organized as follows: the SRT LBE for
fluid flow and both the SRT and OTRT LBEs for solid-liquid phase
change are introduced in Section 2; Section 3 shows the theoretical
analysis of how to eliminate the unphysical numerical simulation by

using the OTRT LBE; five test cases are calculated to validate the OTRT
LBE in Section 4; finally, conclusions are addressed in Section 5.

2. Lattice Boltzmann equation

2.1. SRT LBE for fluid flow

To solve the enthalpy field, the velocity field needs to be previously
calculated. In the present paper, D2Q9 model and D3Q19 model are
adopted for simulating two-dimensional and three-dimensional fluid
flows, respectively. The SRT LBE for fluid flow with a forcing term can
be expressed as [31]
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where fi is the momentum distribution function, fi
eq is the momentum

equilibrium distribution function, Fi is the discrete forcing term, τf is
the relaxation time, t is the lattice simulation time, Δt is the unit time
step. The expressions of fi

eq and Fi can be respectively written as

= ⎡

⎣
⎢ +

→⋅→ +
→→ →→ − ⎤

⎦
⎥f w ρ e u

c
u u e e c I

c
1 ( ) : ( )

2i
eq

i
i

s

i i s

s
2

2

4
(4)

⎜ ⎟
→ = ⎛

⎝
− ⎞

⎠
⎡
⎣
⎢
→ − → →

+
→⋅→ → →⎤

⎦
⎥⋅
⎯→⎯ →F x t w

τ
e u x t

c
e u x t

c
e F x t( , ) 1 1

2
( , ) ( , ) ( , )i i

f

i

s

i

s
i2 2

(5)

where wi is the weight coefficient of direction i, cs is the lattice sound
speed and

⎯→⎯
F is the forcing term. The density and velocity are obtained

by
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The relaxation time τf is related to the kinematic viscosity through

= −ν τ c Δt( 0.5)f s
2 (8)

The discrete velocities of D2Q9 model and D3Q19 model are re-
spectively given as
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where c is the lattice speed defined as =c Δx Δt/ , and Δx is the unit
space step. The corresponding weight coefficients for D2Q9 model and
D3Q19 model are respectively given as
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The lattice sound speed cs is related to the weight coefficient via
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where δαβ is the Kronecker Delta function. Its values of D2Q9 model and
D3Q19 model are both 1/ 3 .

As to the solid–liquid interaction flow, it can be easily simulated
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