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A B S T R A C T

For determination of effective elastic properties of fiber-reinforced materials the so-called Chamis-equations are
standardly used (Chamis, 1989). In this paper, these equations are extended towards viscoelasticity, making use
of the correspondence principle (Lee, 1955). The determination of the effective properties takes place in the
Laplace–Carson domain, with the back-transformation to the time domain being performed analytically, pro-
viding closed-form expressions for the effective viscoelastic behavior of the composite. Fractional viscoelastic
models are used to describe the time-dependent behavior of the matrix, well-capturing the experimentally-
observed viscoelastic behavior with a comparatively low number of parameters. The performance of the pro-
posed determination of effective viscoelastic properties is assessed by means of alternative methods such as
Eigenstrain-based methods and numerical simulations employing unit-cell (UC) models.

1. Introduction

Fractional viscoelastic models (see Fig. 1) are standardly employed
to describe creep and relaxation of a variety of materials (Podlubny,
1999; Mainardi, 2010): Yancey and Pindera (1990) used a fractional
Maxwell model to represent creep data of epoxy resin; in (Dinzart and
Lipiński, 2010) a fractional Zener model is used to model creep of
PMMA (polymethyl methacrylate) and SAN (styrene acrylonytrile co-
polymer); Pichler et al. (2012) identified a fractional Maxwell model for
the viscoelastic behavior of bitumen, with Oeser et al. (2008) and
Celauro et al. (2012) using fractional Burgers models to fit creep data of
asphalt mixtures; moreover, soft biological tissues are found to obey a
fractional Kelvin-Voigt model as proposed in (Meral et al., 2010). Re-
presenting the power-law model, i.e. the fractional Maxwell model, by a
mechanical spring-dashpot combination, Deseri et al. (2014) found a
unique expression for the corresponding free energy, making the frac-
tional Maxwell model even more attractive for being used in viscoe-
lastic material modeling.

For materials consisting of more than one material phase, its ef-
fective (homogenized) elastic as well as viscoelastic behavior may be
determined from the behavior of its constituents by means of homo-
genization methods: Hashin and Rosen (1964) derived expressions for
the effective moduli of fiber-reinforced materials by using the compo-
site cylinder assemblage model, consisting of cylindrical fibers em-
bedded in a matrix. The elastic strain energy is formulated for a

kinematically admissible strain field and a statically admissible stress
field, leading to lower and upper bounds for the strain energy. Ex-
pressions for the effective elastic moduli are finally found by comparing
the strain energy of the cylinder assemblage model with the strain
energy of the effective material. The same author (Hashin, 1966) ex-
tended the aforementioned method to viscoelastic behavior by applying
the correspondence principle (Lee, 1955), where the viscoelastic matrix
material behavior was represented by a Maxwell model. The back-
transformation to time domain was performed analytically assuming
rigid fiber behavior. In (Upadhyaya and Upadhyay, 1991), Hashin’s
composite cylinder model was employed to obtain the effective vis-
coelastic properties of unidirectionally-reinforced composites, with the
viscoelastic material behavior of the matrix extended towards a Prony
series, i.e. a generalized Maxwell model.

Using the equivalent Eigenstrain method (Nemat-Nasser and
Hori, 1993), the effective elastic properties of a medium with inclusions
are determined. An Eigenstrain field is applied onto an effective
medium in such a way, that it represents the strain field of the re-
spective heterogenous material. By comparing the stress and strain
fields, respectively, in the heterogenous and homogenous medium, the
elastic stiffness tensor is obtained. For ellipsoidal inclusions, the solu-
tion given in (Eshelby, 1957) leads to explicit expressions for the elastic
properties. For cylindrical inclusions instead, i.e. for fiber-reinforced
composites, explicit expressions for the elastic properties were pre-
sented in (Nemat-Nasser and Hori, 1993), which have been adapted
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(Luciano and Barbero, 1995; Barbero and Luciano, 1995) in order to
obtain analytical expressions for the effective relaxation moduli of
unidirectionally-reinforced composites considering a Burgers model for
the viscoelastic behavior of the matrix material. By application of the
correspondence principle, the viscoelastic problem is solved in the La-
place–Carson domain analogously to the elastic problem.

In an adaption of the equivalent Eigenstrain method, i.e. the self-
consistent scheme, the effective medium is used for the medium sur-
rounding the inclusions instead of the pure matrix (Budiansky, 1965;
Hill, 1965). This scheme was extended towards viscoelasticity in
(Laws and McLaughlin, 1978) for spheroidal inclusions and cylindrical
fibers by applying the correspondence principle. Finally, Dinzart and
Lipiński (2010) extended the self-consistent method towards fractional
viscoelastic behavior, representing the polymeric constituents by a
fractional Zener model. Experimental validation was exclusively per-
formed in the Laplace–Carson domain employing cyclic-test results;
hence, back-transformation of the effective relaxation moduli to the
time domain became obsolete.

Wang and Pindera (2016) extended an elastic homogenization
theory introduced by Drago and Pindera (2008) towards viscoelasticity
by using the correspondence principle. The viscoelastic matrix behavior
was represented by a fractional Maxwell model, the effective viscoe-
lastic properties were back-transformed to the time domain numeri-
cally.

In this paper, a closed-form solution for the effective viscoelastic
behavior of fiber-reinforced composites considering fractional viscoe-
lastic matrix behavior is presented. For this purpose, the Chamis-
equations – standardly employed for determination of the effective
elastic properties – are extended towards viscoelasticity. The homo-
genization is performed in the Laplace–Carson domain. By means of
back-transformation to the time domain, closed-form expressions for
the effective viscoelastic moduli are found.

This paper is organized as follows: In Section 2, fractional viscoe-
lasticity is briefly reviewed, dealing with the fractional Burgers model,
covering the fractional Zener, Maxwell, and Kelvin-Voigt models as
special cases. The extension of the Chamis-equations towards viscoe-
lasticity is treated in Section 3, finally providing closed-form expres-
sions for the effective viscoelastic properties. In Section 4, the perfor-
mance of the extended Chamis-equations is assessed by alternative
homogenization methods for determining the effective viscoelastic be-
havior, such as the equivalent Eigenstrain method and numerical UC-
based simulations. The paper closes with concluding remarks in
Section 5.

2. Fractional viscoelasticity

For many materials, the viscoelastic behavior is mainly driven by
the deviatoric part of the stress state (Lakes and Wineman, 2006).
Therefore, constitutive equations are split into bulk and shear behavior,
linking volumetric and deviatoric stresses to the respective strains,
reading in case of isotropic elastic behavior:

�= ⇔ = =σ ɛ s ep K G: ɛ , 2 ,vol (1)

with K and G as bulk and shear modulus, respectively. In Eq. (1),
= + +p σ σ σ( ),1
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11 22 33 and s and e represent the

stress and strain deviator, respectively. In case of viscoelastic deviatoric
behavior, the respective stress history is expressed by the convolution
integral, reading (Christensen, 1982)
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assuming =s 0t( ) for t<0. In Eq. (2), R(t) refers to the relaxation
modulus, with =R G in case of elastic behavior. The deviatoric re-
laxation modulus R(t) depends on the underlying viscoelastic model,
reading for the fractional Burgers model considered in this paper
(Mainardi and Spada, 2011):
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where the following abbreviations are used:
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with μ1, μ2 [Pa], τ1, τ2 [s], and ν [-] referring to the parameters of the
springs and fractional dashpots as illustrated in Fig. 1. The Mittag-
Leffler function employed in Eq. (3)is defined as (Mainardi and
Spada, 2011):
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Considering 2μ1 being equal to the elastic shear modulus G, the di-
mensionless relaxation modulus r(t) is introduced as
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3. Viscoelastic extension of Chamis-equations

The Chamis-equations provide the effective elastic properties
(Young’s moduli, shear moduli, Poisson’s ratios) for a unidirectionally-
reinforced composite (Chamis, 1989):
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Fig. 1. Mechanical representations of fractional models: (a) fractional Burgers
model, (b) fractional Kelvin-Voigt model, (c) fractional Zener model, and (d)
fractional Maxwell model.
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