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a b s t r a c t

In Yin and Lin (2016), a new penalty, termed as iSCAD penalty, is proposed to obtain the
maximum likelihood estimates (MLEs) of the weights and the common scale parameter of
an Erlang mixture model. In that paper, it is shown through simulation studies and a real
data application that the penalty provides an efficient way to determine the MLEs and the
order of the mixture. In this paper, we provide a theoretical justification and show that the
penalized maximum likelihood estimators of the weights and the scale parameter as well
as the order of mixture are all consistent.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

The Erlang mixture model under consideration in this paper is of the following density: 2

h(x; α, γ, θ ) =

m∑
j=1

αjg(x; γj, θ ), x > 0, (1.1) 3

where α = (α1, . . . , αm) is the mixing distribution andm is the number of components or the order of the mixture. Further, 4

each component density is an Erlang of the form: 5

g(x; γj, θ ) =
xγj−1e−x⧸θ

θγj (γj − 1)!
, x > 0, (1.2) 6

with common scale parameter θ > 0 and positive integer shape parameter γj. To ensure the unique expression of density 7

function (1.1), we assume that γ1 < γ2 < · · · < γm as we did in Yin and Lin (2016). The Erlang mixture model and its 8

multivariate version have been widely used in modeling insurance losses due to its desirable distributional properties. For 9

example, risk measures such as VaR and TVaR can be calculated easily. For more details on the applications, see Lee and Lin 10

(2010), Cossette et al. (2013), Porth et al. (2014), Verbelen et al. (2015), Hashorva and Ratovomirija (2015), Verbelen et al. 11

(2016), and references therein. 12

As amixturemodel, an expectation–maximization (EM) algorithm is naturally used to fit themodel to data by estimating 13

the scale parameter and the mixing weights. However, the shape parameter of each of the Erlang components is not 14

estimated. In order to include all possible Erlang distributions for component selection, one must start with a large number 15

of components in an Erlang mixture when running the EM algorithm. Over-fitting could be a concern in this situation. To 16
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maintain the goodness of fit and to avoid over-fitting at the same time, an ad hoc method for shape parameter selection1

and BIC are used. See Lee and Lin (2010) and Verbelen et al. (2015). Several issues arise. First, the ad hoc method requires2

repeated runs of the EM algorithm, which can be computationally burdensome. Second, the chosen shape parameters are3

often suboptimal in terms of the order of themixture. Third, using BIC often results in a poor fit of a model to the sparse right4

tail of the data, a major shortcoming in insurance loss modeling and risk measure calculation. Last, statistical properties of5

the corresponding estimators cannot be obtained under the ad hoc approach. Yin and Lin (2016) propose a new thresholding6

penalty function, termed as iSCAD, to penalize the likelihood when estimating the scale parameter and the mixing weights7

of the Erlang mixture. This approach is motivated by the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li,8

2001) in regression analysis and the MSCAD introduced in Chen and Khalili (2008) for Gaussian mixtures. The thresholding9

feature of the proposed penalty ensures the sparsity of themixture, which allows us to avoid over-fitting andmaintain fitting10

accuracy at the same time. Moreover, the structure of the penalty results in the unbiasedness and continuity in estimation.11

In this paper, we turn to the issue of consistency of the estimates including the order estimate when using the iSCAD12

penalized likelihood for the Erlang mixture model, as the consistency of the order is one of the most important statistical13

issues for mixture modeling. In the current statistics literature, most research focuses on Gaussian mixtures and a number14

of methods have been proposed. See Leroux (1992), James et al. (2001), Keribin (2000), Ciuperca et al. (2003), Ahn (2009),15

Chen et al. (2012) and references therein. However, few research have been done on non-negative non-Gaussian mixtures16

and few existing results may be directly applicable to the aforedescribed Erlang mixture.17

In this paper, we examine the consistency of the estimators of the weight parameter and common scale parameter, as18

well as the order estimator, when using the iSCAD penalized likelihood. In Section 2 we introduce the iSCAD penalty, the19

corresponding penalized likelihood and the estimators obtained from the maximum penalized likelihood. Main results and20

their proofs are given in Section 3 in which we show that the estimators are consistent.21

2. The iSCAD penalty22

Yin and Lin (2016) propose a newpenalty function termed as iSCAD,which penalizes individually theweights of an Erlang23

mixture. For each weight πj, j = 1, . . . ,m, the iSCAD penalty function is defined as24

Pλ(πj) = λ{log
aλ + ε

ε
+

a2λ2

2
−

aλ
aλ + ε

}I(πj > aλ)

+ λ{log
πj + ε

ε
−

π2
j

2
+ (aλ −

1
aλ + ε

)πj}I(πj ≤ aλ),
(2.1)25

where λ is a tuning parameter that is a function of n with condition λ → 0, as n → ∞. a =
m

m−λ
> 1 is to ensure that the26

estimator π̂j of πj is continuous and parameter ε = λ3/2 is to ensure that the range of πj includes 0. These conditions are27

motivated by the conditions in Theorem4 of Leroux (1992) to ensure to not overestimate the order of the Erlangmixture. The28

tuning parameter will ensure the sparsity of themixture as it serves as a lower bound of themixing weights. This property is29

crucial to avoid over-fitting andmaintain fitting accuracy at the same time.Moreover, the structure of the iSCAD penalty and30

its derivative will result in the unbiasedness and continuity in estimation of the mixing distribution when an EM algorithm31

is used.32

Insurance loss/claim data aremostly left truncatedwith known truncation points (in the form of a deductible or retention33

limit). See the data sets in Beirlant et al. (2006) and Verbelen et al. (2015). Suppose l to be a truncation point. Then, the34

probability density function of a left-truncated Erlang mixture is35

h(x; φ) =
h(x; α, γ, θ )

H(l; α, γ, θ )
=

m∑
j=1

αj
g(x; γj, θ )

H(l; α, γ, θ )
36

=

m∑
j=1

αj
G(l; γj, θ )

H(l; α, γ, θ )

g(x; γj, θ )

G(l; γj, θ )
=

m∑
j=1

πj gθ (x; l, γj), (2.2)37

where φ = (π1, . . . , πm, θ ). There, H(x; α, γ, θ ) and G(x; γj, θ ) are the survival functions of h(x; α, γ, θ ) and g(x; γj, θ ),38

respectively,39

gθ (x; l, γj) =
g(x; γj, θ )

G(l; γj, θ )
,40

and41

πj = αj
G(l; γj, θ )

H(l; α, γ, θ )
. (2.3)42

Further, let Gθ (x; l, γj) be the cumulative distribution function of gθ (x; l, γj).43
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