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a b s t r a c t

We propose the goodness of fit test for inhomogeneous Poisson processes with unknown
scale and shift parameters. A test statistic of Cramér–von Mises type is proposed and its
asymptotic behavior is studied. We show that under null hypothesis the limit distribution
of this statistic does not depend on unknown parameters.
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1. Introduction 1

The problems of the construction of goodness of fit tests in the case of i.i.d. observations are well studied (Lehmann 2

and Romano, 2005). Special attention is payed to the case of parametric null hypothesis. Wide class of distributions can 3

be parametrized by the shift and scale parameters, say, F
(

x−ϑ1
ϑ2

)
. In the case of such families several authors showed 4

that the limit distributions of the Kolmogorov–Smirnov and Cramer–von Mises tests statistics do not depend on the 5

unknown parameters (see Darling, 1958; Durbin, 1973; Gikhman, 1953; Dzhaparidze and Nikulin, 1982; Martynov, 1979 6

and references therein). We call such tests asymptotically parameter free (APF). 7

For the continuous time stochastic processes the goodness of fit testing is not yet well developed. We can mention 8

here several works for diffusion and Poisson processes (Dabye, 2013; Dabye et al., 2016; Dachian and Kutoyants, 2007; 9

Davies, 1977; Kleptsyna and Kutoyants, 2014; Kutoyants, 2014b, a; Weiss, 1975). The problem of goodness of fit testing 10

for inhomogeneous Poisson process is interesting because there is a wide literature on the applications of inhomogeneous 11

Poisson processmodels in different domains (astronomy, biology, image analysis, medicine, optical communication, physics, 12
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reliability theory, etc.). Therefore to know if the observed Poisson process corresponds to some parametric family of intensity1

functions is important.2

We consider the problem of goodness of fit testing for inhomogeneous Poisson process which under the null hypothesis3

has the intensity function with shift and scale parameters (two-dimensional unknown parameter). We show that as in the4

classical case the limit distribution of the Cramer–von Mises type statistics does not depend on these unknown parameters.5

This allows us to construct the corresponding APF goodness of fit test of fixed asymptotic size. The similar one-dimensional6

problems with shift and scale parameters separately were considered in the works (Dabye, 2013; Dabye et al., 2016)7

respectively. The proofs there are based on the asymptotic expansions of theMLEs of these parameters obtained in Kutoyants8

(1998). These expansions require much more regularity conditions, than the weak convergence approach applied in our9

work.10

2. Statement of the problem and auxiliary results11

Suppose that we observe n independents inhomogeneous Poisson processes Xn
=
(
X1, . . . , Xn

)
, where Xj =

(
Xj (t) , t ∈12

R
)
are trajectories of the Poisson processes with the mean function Λ (t) = EXj (t) =

∫ t
−∞

λ (s) ds. Here λ (·) ≥ 0 is the13

corresponding intensity function.14

Let us remind the construction of GoF test of Cramér–von Mises type in the case of simple null hypothesis. The class of15

tests
(
Ψ̄n
)
n≥1 of asymptotic size ε ∈ (0, 1) is16

Kε =

{
Ψ̄n : lim

n→∞
E0Ψ̄n = ε

}
.17

Suppose that the basic hypothesis is simple, say, H0 : Λ (·) = Λ0 (·) , where Λ0 (·) is a known continuous function18

satisfying Λ0 (∞) < ∞. The alternative is composite (non parametric) H1 : Λ (·) ̸= Λ0 (·) . Then we can introduce the19

Cramér–von Mises (C–vM) type statistic20

∆̃n =
n

Λ0(∞)2

∫
R

[
Λ̂n(t) −Λ0(t)

]2 dΛ0(t),21

where Λ̂n(t) =
1
n

∑n
j=1Xj (t) is the empirical mean of the Poisson process. It can be verified that under H0 this statistic22

converges to the following limit:23

∆̃n H⇒ ∆ ≡

∫ 1

0
W (s)2ds,24

whereW (s) , 0 ≤ s ≤ 1 is a standardWiener process. Therefore the C–vM type test ψ̃n (Xn) = 11{∆̃n>cε} with the threshold25

cε defined by the equation P {∆ > cε} = ε belongs to Kε . This test is asymptotically distribution free (ADF) (see, e.g., Dachian26

and Kutoyants, 2007). Remind that the test is called ADF if the limit distribution of the test statistic under hypothesis does27

not depend on the mean functionΛ0 (·).28

Let us consider the case of the parametric null hypothesis. It can be formulated as follows. We have to test the null29

hypothesis30

H0 : Λ (·) ∈ L (Θ) =

{
Λ0 (ϑ, t) , ϑ ∈ Θ, t ∈ R

}
,31

against the alternative H1 : Λ (·) ̸∈ L (Θ) . Here Λ0(ϑ, ·) is a known mean function of the Poisson process depending on32

some finite-dimensional unknown parameter ϑ ∈ Θ ⊂ Rd. Note that under H0 there exists the true value ϑ0 ∈ Θ such that33

the mean of the observed Poisson processΛ (t) = Λ (ϑ0, t) , t ∈ R.34

The C–vM type GoF test can be constructed by a similar way. Introduce the normalized process ūn(t) ≡ un
(
t, ϑ̄n

)
=35

√
n
(
Λ̂n(t) −Λ0(ϑ̄n, t)

)
, t ∈ R. Here ϑ̄n is some estimator of the parameter ϑ , which is (under hypothesis H0) consistent36

and asymptotically normal
√
n
(
ϑ̄n − ϑ0

)
H⇒ ξ .37

The corresponding C–vM type statistic can be38

∆̄n =
n

Λ0
(
ϑ̄,∞

)2 ∫
R

(
Λ̂n(t) −Λ0(ϑ̄n, t)

)2dΛ0(ϑ̄n, t)39

Then, under null hypothesis H0, we can verify the convergence

ūn(t) =
√
n
(
Λ̂n(t) −Λ0(ϑ0, t)

)
+

√
n
(
Λ0(ϑ0, t) −Λ0(ϑ̄n, t)

)
= Wn (t)− ⟨

√
n
(
ϑ̄n − ϑ0

)
,
∂Λ0(ϑ0, t)

∂ϑ
⟩ + o (1)

H⇒ W (Λ0(ϑ0, t))− ⟨ξ (ϑ0) , Λ̇0 (ϑ0, t)⟩.
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