INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2018) I-10

Available online at [www.sciencedirect.com](www.sciencedirect.com/science/journal/03603199)

ScienceDirect

journal homepage: <www.elsevier.com/locate/he>

Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction

Sa Liu ^{a,}*, Zheng Yang ^a, Liwen Liu ^a, Mengli Li ^a, Yan Wang ^a, Wenjie Lv ^a,
Xigouyen Chen ^a, Xinsheng Zhao ^{b,**}, Ping Zhu ^{a,} Guoxiang Wang ^c , Zheng Yang , Liwen Liu , Mengli Li , Yan wang
Chen ^a Yinsheng Zhao ^{b,**} Ping Zhu ^a Guoxiang W Xiaowen Chen ^a, Xinsheng Zhao ^{b,**}, Ping Zhu ^a, Guoxiang Wang ^c

a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China

^b School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, PR China

^c School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China

article info

Article history: Received 2 September 2017 Received in revised form 17 June 2018 Accepted 25 June 2018 Available online xxx

Keywords: Fuel cells Oxygen reduction reduction Nonprecious metal catalyst Bimetallic catalyst Nitrogen doped

ABSTRACT

The development of efficient nonprecious metal catalysts for oxygen reduction reaction (ORR) is crucial but challenging. Herein, one simple and effective strategy is developed to synthesize bimetallic nitrogen-doped carbon catalysts by pyrolyzing Fe-doped Vitamin B12 (VB12) supported carbon black (Fe-VB12/C). A typical Fe₂₀-VB12/C catalyst with a nominal iron content of 20 wt% pyrolyzed at 700 \degree C exhibits remarkably ORR activity in alkaline medium (half-wave potential of 0.88 V, 10 mV positive than that of commercial Pt/C), high selectivity (electron transfer number > 3.93), excellent stability (only 6 mV negative shift of half-wave potential after 5000 potential cycles) and good methanol-tolerance. The superior ORR activity of the composite is mainly attributed to the improved mesoporous structure and co-existence of abundant Fe-N_x and Co-N_x active sites. Meanwhile, the metallic Fe are necessary for the improved ORR activity by means of the interaction of metallic Fe with neighboring active sites.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Fuel cells are considered as one of most promising energy conversion technologies owing to their high energy efficiency and eco-friend $[1-3]$ $[1-3]$ $[1-3]$. However, due to the high cost of platinum-based catalyst and the sluggish kinetics of oxygen reduction reaction (ORR), developing nonprecious metal catalysts (NPMCs) with excellent ORR performance is crucial to the commercialization of fuel cells but challenging $[4-6]$ $[4-6]$. Among various NPMCs, transition metal-nitrogen-carbon (denoted as M-N-C; $M = Fe$, Co or their alloys) complexes or

composites are the most promising candidates for ORR $[7-20]$ $[7-20]$, because of their low price, high activity, durability and excellent methanol-tolerance.

Since Jasinski reported the electrocatalytic activity of Cophthalocyanine in 1964 $[21]$, there has at least two significant breakthroughs for preparing M-N-C catalysts in the thermal treatment (e.g. $600-1000$ °C) and the introduction of cheap nitrogen sources $[7,22-25]$ $[7,22-25]$. Recently, more intensive researches have been devoted to develop high activity M-N-C catalysts by heat-treating a mixture of carbon materials, nitrogen-containing precursor and transition metal salts. For example, Wan et al. $[26]$ developed a Fe-N-C catalyst with

E-mail addresses: liusa@jsnu.edu.cn (S. Liu), xinshengzhao@jsnu.edu.cn (X. Zhao). <https://doi.org/10.1016/j.ijhydene.2018.06.156>

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Liu S, et al., Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.06.156

^{*} Corresponding author.

^{**} Corresponding author.

outstanding ORR activity through a pyrolysis a mixture of glucose coated carbon nanotubes, $FeCl₃$ and melamine. Lin et al. [\[27\]](#page--1-0) prepared a FeCoN/graphene catalyst at a pyrolysis temperature of 750 $^{\circ}$ C, which demonstrated as a cathode material for the ORR in a fuel cell with a maximum power density output of 130 mW cm^{-2} at 0.25 V. Although the intrinsic nature of active sites in M-N-C catalysts is still uncertain to date, it is commonly accepted that there are at least two fundamentally different active sites in terms of metalfree C-N_x site (such as pyridinic and quaternary N) $[28,29]$ and M-N_x site (Fe-N_x or Co-N_x, such as FeN₂₊₂, FeN₂, and FeN₄ or CoN₄) [\[14,15,30](#page--1-0)-[32\].](#page--1-0) Furthermore, many recent studies have elucidated that metallic M particles or M_3C moieties ($M = Fe$, Co or their alloy) played an important role in improving the ORR activity directly as catalytic activity species [\[33,34\]](#page--1-0) and/or by the interaction of the metal dopants with the neighboring sites [\[26,35\].](#page--1-0)

To obtain a promising M-N-C catalyst, one possible effective strategy is to develop the low cost metal macrocycle materials with $M-N_x$ center, of which cyanocobalamin (Vitamin B12, VB12) with a porphyrin-like structure is one good candidate. Since Zagal et al. have reported the electrochemical performance of VB12 absorbed on a graphite electrode $[36,37]$, many researchers $[38-41]$ $[38-41]$ $[38-41]$ successively investigated the VB12-based Co-N-C complex as efficient electrocatalyst for ORR. However, the electrochemical performance of these catalysts still need to be further improved. Some researchers have reported that the Fe-N-C catalyst shows higher ORR activity than Co-N-C catalyst under same conditions, although the latter is much stable in acid/alkaline medium [\[27,31,32,42,43\].](#page--1-0) In addition, it has been reported that Fe catalyzes the ORR mainly through a 4-electron direct pathway and has a much higher turnover frequency for H_2O_2 disproportionate reduction than Co does [\[27,44,45\]](#page--1-0).

Herein, we report a simple but effective method to prepare a bimetallic nitrogen-doped carbon electrocatalyst based pyrolyzed Fe-doped VB12 supported carbon black (Fe-VB12/ C) at 700 °C, which contains M-N_x ($M = Fe$ and Co) sites and carbon-encapsulated metallic Fe nanoparticles. The bimetallic catalyst combines the high stability of Co-based catalyst with the excellent catalytic activity of Fe-based catalyst. Thus, the Fe-VB12/C catalyst exhibits remarkably higher ORR activity than the VB12/C and excellent electrochemical stability in alkaline media. Additionally, the microstructure and ORR activities of the Fe-VB12/C catalysts are carefully characterized and compared under different conditions. Our protocol presents a promising candidate to commercial Pt/C in storage devices and energy conversion particular to fuel cells.

Experimental section

Materials

The VB12 and commercial Pt/C (20 wt% Pt) were purchased from Alfa Aesar. The carbon black (Vulcan XC-72) was purified prior to use by solvothermal in 3 M HNO₃ at 120 °C for 6 h. Other chemicals were used as received without further modification.

Synthesis of Fex-VB12/C electrocatalysts

A typical Fe-Co-N-C catalyst with a nominal iron content of 20 wt% was prepared as follows: 302.8 mg FeCl₃ \cdot 6H₂O, 50 mg VB12 and 200 mg Vulcan XC-72 were dispersed uniformly in 20 ml de-ionized water (18.2 M Ω) under constant stirring for overnight at room temperature, then the solution was heated at 80 \degree C to evaporate water. Subsequently, the powder was pyrolyzed to 700 °C at a rate of 5 °C min⁻¹ and then held at 700 \degree C for 2 h in a quartz tube under nitrogen atmosphere. Accordingly, the catalyst was denoted as $Fe₂₀$ -VB12/C.

To study the effect of Fe loading on the catalytic activities, the catalysts were prepared by changing the nominal iron content from 5 wt% to 25 wt% while keeping the pyrolysis temperature at 700 °C. These catalysts were denoted as Fe_x -VB12/C, in which x represented the wt % Fe in the catalyst precursor.

Synthesis of the control electrocatalysts

For comparison, VB12/C, Fe/C and C were synthesized at 700 \degree C using the exactly same procedure except for no addition of iron source, VB12, and both iron source and VB12, respectively. In addition, the other control experimental was also carried out: the catalyst $Fe₂₀-VB12/C$ was etched by refluxing in 20 ml of 2 M H_2SO_4 at 110 °C for 8 h to remove the metal nanoparticles, then the suspension was filtered and washed until the filtrate showed a pH value of ~7. Finally, the dried powder was pyrolyzed at 700 °C under N_2 -flow for 2 h and was denoted as acid-etched Fe_{20} -VB12/C catalyst.

$C_{\rm eff}$ at $C_{\rm eff}$ electrocatalysts such a set \sim

 $N₂$ adsorption/desorption isotherms were measured with a Quantachrome Autosorb IQ_2 -VP instrument. The samples were degassed at 200 \degree C for 6 h under vacuum before the measurement. The surface areas and the pore-size distributions were calculated by using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The morphologies of the catalysts were characterized by JEOL JEM-2000EX transmission electron microscope (TEM) and FEI Tecnai G2 F20 high resolution TEM (HRTEM). Scanning electron microscope (SEM) with a field emission scanning electron microanalyzer (HITACHI S-8010) was carried out with energy dispersed X-ray spectroscopy (EDS). Power X-ray diffraction (XRD) measurements were conducted using a Bruker AXS D8 ADVANCE power X-ray diffractometer with a Cu K α (λ = 1.5418 Å) radiation source. The surface properties were determined by X-ray photoelectron spectroscopy (XPS) from an ESCALAB 250Xi (Thermo Fisher) attached with an Al Ka X-ray radiation. Thermogravimetric analysis (TGA) was carried out on a TA Q50 instrument under a flow of air with a temperature ramp of 10 $^{\circ}$ C min⁻¹.

Electrochemical measurements of electrocatalysts

A rotating ring-disk electrode (RRDE) with a glass carbon disk (4 mm diameter) and a platinum ring (5 mm inner diameter and 7 mm outer diameter) was served as the substrate for the working electrode. Before all electrochemical measurements,

Please cite this article in press as: Liu S, et al., Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.06.156

Download English Version:

<https://daneshyari.com/en/article/8961307>

Download Persian Version:

<https://daneshyari.com/article/8961307>

[Daneshyari.com](https://daneshyari.com)