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In the present work, we examine the potential robustness of extreme wave events associated with large 
amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the 
discrete nonlinear Schrödinger (DNLS) equation, namely the Ablowitz–Ladik (AL) model. Our model of 
choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. 
We find that rogue wave events essentially are drastically distorted even for very slight perturbations of 
the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that 
the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist 
under “generic” perturbations of the limiting integrable case.

© 2018 Published by Elsevier B.V.

1. Introduction

The study of phenomena associated with extreme events and 
rogue (or freak) waves has gained substantial traction over the 
last few years [1–4]. This can largely be attributed to the devel-
opment of experimental settings in a variety of fields where the 
relevant coherent structures can be systematically created and ob-
served. These fields range from superfluid helium [5] to hydrody-
namics [6–8], and from nonlinear optics [9–14] and plasmas [15]
to Faraday surface ripples [16] and parametrically driven capillary 
waves [17]. Experimental efforts have, in part, been motivated by 
– and also inspired – numerous theoretical investigations, mainly 
concerning variants of the nonlinear Schrödinger (NLS) equation. 
The theoretical activity has now been summarized in many re-
views [18–20] and books [1–4].

One of the significant aspects of the investigation of ex-
treme wave events has to do with the structural form that these 
events assume, and perhaps especially with their robustness in 
NLS and related models. The seminal works of Peregrine [21], 
Kuznetsov [22], Ma [23], and Akhmediev [24], as well as of Dysthe 
and Trulsen [25], have provided a framework of study of relevant 
coherent structures, either periodic in space (such as the Akhme-
diev breather) or periodic in time (such as the Kuznetsov–Ma 
breather) or, most notably, localized in space-time, as the Peregrine 
soliton [21]. A question then emerges about whether these entities 
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survive model perturbations and/or emerge under generic classes 
of initial conditions. Admittedly, the latter question has only been 
partially addressed. For instance, in a class of perturbations involv-
ing Hirota-model variants (such as third-order dispersion and self-
steepening terms), a perturbed, still algebraically decaying variant 
of the Peregrine soliton was obtained (however its persistence 
was not ensured to all orders in the perturbation) [26]. Moreover, 
adiabatic approximations [27] and perturbed inverse scattering ap-
proaches [28] have considered the stability of Kuznetsov–Ma (KM) 
solitons indicating their potential robustness against dispersive but 
non-robustness against dissipative perturbations. A different per-
spective on the emergence of localized phenomena in space-time 
was given by the work of [29], where it was argued that the 
proximity of such solutions to chaotic states (in more elaborate, 
non-integrable models) appears to increase the occurrence of ex-
treme events. Other works have focused on the stability properties 
of solutions [30–32]; however, there is an ambiguity associated 
with the time-dependent nature of the solutions. A natural setup 
for performing stability studies is, arguably, the Floquet analysis of 
the time-periodic KM breather solution [33].

In a recent work [34], a different type of “genericity” of these 
solutions was considered: the emergence of extreme events stem-
ming from simple – yet typical – Gaussian initial data, under a 
phenomenon called gradient catastrophe that has been explained 
in the pioneering work of [35]. In particular, it was proposed that 
in the semiclassical limit of the NLS model, such initial data will 
lead to the formation of an array of essentially identical (up to 
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small corrections) Peregrine soliton-like structures, which emerge 
at the poles of the so-called tritronquée solution of the Painlevé I 
equation. The importance of these findings is underscored by the 
fact that very recently the universality of this emergence of the 
Peregrine soliton in the semiclassical focusing dynamics of the 
NLS model has been manifested experimentally [36]. Furthermore, 
recently, such Peregrine waveforms were also found to sponta-
neously emerge as a result of the interaction of dispersive shock 
waves [37].

Our aim in the present work is to explore the relevance of 
Peregrine-soliton type solutions in spatially discrete systems, i.e., 
in nonlinear dynamical lattices. There has been an amount of work 
in this context as well. In particular, it has been established that 
a Peregrine-like solution, strongly reminiscent of its continuum 
sibling exists [38] in the context of the completely integrable dis-
crete version of the NLS equation, the so-called Ablowitz–Ladik 
(AL) model [39,40]. In fact, subsequent work has established the 
systematic construction of higher-order such solutions [41]. How-
ever, it is also well-known that while the AL model is useful for 
the consideration of numerous perturbative calculations involving 
single discrete solitons [42], their stability [43] and their colli-
sional dynamics [44], it is not of direct relevance to experimen-
tal settings. On the contrary, the quintessential discrete model of 
relevance, both to nonlinear optics (in the context of arrays of cou-
pled waveguides) and to atomic Bose–Einstein condensates (BECs) 
confined in optical lattices, is the discrete nonlinear Schrödinger 
(DNLS) equation [45]. Hence, our considerations herein will involve 
departing in a systematic way from the AL model and approaching 
the DNLS one. This will be done through the Salerno model [46], 
interpolating between the two limits.

We consider a Gaussian initial profile (as a generic waveform) 
and examine a two-parametric variation. In particular, on the side 
of varying the initial condition parameters, we examine the effect 
of changing the variance of the initial condition (IC). Here, us-
ing a large variance places us within the so-called semi-classical 
regime [35], where we may expect analogously to the continuum 
case of [34] to observe Peregrine soliton like structures. On the 
other hand, at the level of varying the model, we consider changes 
of a homotopic parameter as extending from the AL limit all the 
way to the DNLS one, and examine a wide variety of cases in 
between. Our main observation is that at the AL limit, we iden-
tify Peregrine structures and even a space-time evolution featuring 
the emergence of a “Christmas-tree”-like pattern, analogous to the 
continuum case [34], as an apparent discrete emulation of the 
gradient catastrophe phenomenology of [35]. Nevertheless, this ap-
pears to be – in some sense – a singular case, in that as soon 
as we depart from this integrable limit, the prevalent dynamical 
structures appear to consist of persistent or breathing in time dis-
crete solitonic entities (discussed at length in the context of DNLS 
models [45]), rather than of Peregrine-like patterns. It is intrigu-
ing to point out that a similar conclusion (a propensity towards 
freak waves near the integrable limit) had emerged through the 
important statistical analysis of Ref. [47]. In fact, our observations 
lead us to conjecture that no direct analogue of the Peregrine soli-
ton exists in the DNLS model, although one exists in its continuum 
limit, as well as in its integrable discrete sibling. A dynamical sys-
tems analysis that would tackle this persistence problem would be 
of paramount importance for future work.

Our presentation is structured as follows. In section 2, we 
present the relevant mathematical model(s) and the corresponding 
prototypical solutions. In section 3, we establish the correspond-
ing numerical results and comment on the relevant observations. 
Finally, in section 4, we present a summary of our findings and 
provide some suggestions for future work.

2. The model

The model of interest originates from the focusing NLS equa-
tion, written in dimensionless form as follows:

i∂t u = −1

2
∂2

x u − |u|2u, (1)

where u(x, t) ∈ C is the wave function. Next, discrete realizations 
of Eq. (1) can be obtained, e.g., by replacing the (continuous) de-
pendent variable u(x, t) with un(t) .= u(xn, t) (xn = −L + nh with 
L the grid’s half-width) and the second partial derivative with its 
second-order accurate centered finite difference operator. This way, 
we obtain the discrete NLS (DNLS) equation:

iu̇n = − 1

2h2 (un+1 − 2un + un−1) − |un|2un, n ∈ Z, (2)

where overdot stands for differentiation with respect to time and, 
hereafter, we will set the lattice spacing h = 1 [48]. Details on the 
derivation and physical origin of the DNLS, e.g., in coupled opti-
cal waveguides and in BECs confined in optical lattices, as well its 
discrete soliton solutions, can be found in the review [45].

A different discretization of Eq. (1) can be obtained by discretiz-
ing the field value multiplying the square modulus in Eq. (2) as 
un

.= (un+1 + un−1)/2. The resulting discrete lattice model is the 
AL model [39,40], which is of the form:

iu̇n = −1

2
(un+1 − 2un + un−1) − 1

2
|un|2 (un+1 + un−1) . (3)

To interpolate between the DNLS and the AL models, we intro-
duce a real parameter μ ∈ [0, 1]. Then, we can write the following 
“tunable” discrete lattice system:

iu̇n = −1

2
(un+1 − 2un + un−1) − μ|un|2un

−1

2
(1 − μ) |un|2 (un+1 + un−1) , (4)

which corresponds to the DNLS and AL models for μ = 1 and μ =
0, respectively. This generalized Salerno model [46] of Eq. (3) will 
be the focal point of our subsequent numerical investigations.

Here, it should be noted that the AL model supports rational 
solutions of the rogue wave type: in particular, the first-order such 
rational solution of the AL system is of the form [38]:

un = Uneiφ, Un(t) =
(

4q
(
1 + q2

) (
1 + 2iq2t

)
1 + 4q2n2 + 4q4

(
1 + q2

)
t2

− q

)
eiq2t,

(5)

with q and φ being a real background amplitude and (arbitrary) 
phase, respectively. We will compare our findings to this solution, 
especially so in computations associated with the AL limit. In that 
light, the background amplitude q will be utilized as a fitting pa-
rameter to obtain the “best-fit” Peregrine soliton.

Our goal is to study the initial value problem (IVP) which con-
sists of Eq. (4) (for various values of μ ∈ [0, 1]) and Gaussian initial 
data, of the form:

un(t = 0) = e−n2/2σ 2
, (6)

where σ characterizes the Gaussian’s width. In a vein reminiscent 
of the work of Ref. [34], we are interested in identifying parametric 
regimes of both σ and μ, such that extreme events (or fundamen-
tal solitons) can be obtained at the discrete level.
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