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Stochastic resonance is a phenomenon that a weak signal can be amplified and optimized by the 
assistance of noise in bistable system. There is still not enough research on the mutual interplay among 
system, noise and signal. In this paper, we study the role of every parameter in nonlinear transfer and 
discover chaos phenomenon in stochastic resonance. To measure the influence of chaos, a trajectory 
decision function was proposed. Based on this function, we found two forms of stochastic resonance, 
clockwise resonance and counterclockwise resonance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The concept of stochastic resonance (SR) was originally put for-
ward by Roberto Benzit et al. [1] for explaining the periodicity 
of ice ages in 1981. They used the mechanism of over-damped 
particles moving in double-well to illustrate the mechanism of 
stochastic resonance. The phenomena have been researched ex-
tensively in theory and experiment. McNamara et al. (1989) [2]
proposed a two-state model which can be regarded as an adi-
abatic approximation to any continuous bistable system. Hanggi 
et al. (1991) [3] extends the linear response theory of statistical 
equilibrium systems to stochastic processes. Collins (1995) et al. 
[4,5] proposed the concept of aperiodic stochastic resonance (ASR), 
based on which various applications emerged [6–9]. Stocks (2000) 
et al. [10,11] studied the effect of noise on the suprathreshold sig-
nals based on a summing network of N threshold devices, which 
was termed as suprathreshold stochastic resonance (SSR). By an 
appropriate choice of threshold level, noise can also optimize the 
detection of suprathreshold signals [12–15]. Steven Kay [16] ex-
plained the reason of detector performance improved by adding 
noise.

Classical stochastic resonance mainly focuses on periodic sig-
nals and Gaussian white noise. The effect of different types of 
noise, such as levy noise, Poisson white noise, fractional Gaussian 
noise and colored noise, is further studied [17–21].

* Corresponding author.
E-mail addresses: liujinming@jmu.edu.cn, 12473585@qq.com (P. Liu).

The resonance ability of bistable system can be enhanced by 
tuning system parameters [21–24]. In addition to the traditional 
bistable stochastic resonance system, piecewise bistable SR and pe-
riodic potential SR are proposed [25,26].

Numerous contributions to stochastic resonance have appeared 
and the phenomena are well explained under the respective hy-
pothetical conditions. However, these theories do not adequately 
explain the nonlinear dynamic behavior of stochastic resonance 
systems. Therefore, this paper intends to find a straightforward 
approach to explain the mutual interplay between the transfer of 
power among the system x(t), the sources of noise �(t), and the 
signal s(t). We examined how each parameter acts on resonance 
output and found two forms of stochastic resonance based on the 
function we put forward, i.e., clockwise resonance and counter-
clockwise resonance. Normally the particles in the plane move in 
a clockwise direction, and the system output signal has the same 
phase as the original signal. But under certain conditions, we found 
the particles can also move in a counterclockwise direction, which 
is reverse of the former. And the system output signal is exactly 
opposite in phase to the original signal. Furthermore, we found a 
tipping point that particles enter chaos status and relationship be-
tween the point and stochastic resonance system parameters.

2. System model

It is known that the SR phenomenon can be expressed by the 
Langevin equation, which is governed by Eq. (1).

dx
dt = − ∂V x)

∂x + u(t)
u(t) = s(t) + �(t)

(1)
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Fig. 1. The sketch of V(x) and ∂V x)
∂x when a=1, b=1.

where V(x) is the nonlinear potential function and u(t) is the in-
put signal s(t) mixed with noise �(t), which is the Gaussian white 
noise with intensity D, Eq. (2).

< �(t) >= 0
< �(t),�(t′) >= 2Dδ(t − t′) (2)

For the bistable potential, V(x) can be described as Eq. (3).

V (x) = −1

2
ax2 + 1

4
bx4,a > 0,b > 0 (3)

By deriving the partial derivative of the function V(x), we can 
get Eq. (4), which represents the change rate of potential function.

∂V (x)

∂x
= −ax + bx3,a > 0,b > 0 (4)

Fig. 1 is sketch of potential function V(x) and partial deriva-
tive ∂V x)

∂x . The inflection points of potential function V(x) located 

at V a(−
√

a
b , − a2

4b ), V b(0, 0), V c(+
√

a
b , − a2

4b ). The inflection points 

of ∂V x)
∂x located at Z1(−

√
a

3b , +
√

4a3

27b ), Z2(+
√

a
3b , −

√
4a3

27b ).

If u(t)= ∂V (x)
∂x = − ax + bx3 is satisfied, then dx

dt ≡ 0, that is to 
say, x is stable and does not change over time under this assump-
tion. Substituting Eq. (3) into Eq. (1), the governing Eq. (5) can be 
obtained.
dx

dt
= ax − bx3 + s(t) + �(t) (5)

If we consider the overdamped motion of a Brownian particle 
in a symmetric double well in the presence of noise and periodic 
forcing, Eq. (5) can be written as a generic model Eq. (6).

dx

dt
= ax − bx3 + A cos(2π ft) + �(t) (6)

Due to the non-linear and non-autonomous features of Eq. (6), 
it is difficult to obtain its exact solution expression. To obtain nu-
merical solution with high-precision [26–28], we consider fourth-
order Runge–Kutta algorithm, Eq. (7).

xn+1 = xn + 1
6 (k1 + 2k2 + 2k3 + k4)

k1 = h(axn − bxn
3 + un)

k2 = h[a(xn + k1
2 ) − b(xn + k1

2 )3+un]
k3 = h[a(xn + k2

2 ) − b(xn + k2
2 )3+un+1]

k4 = h[a(xn + k3) − b(xn + k3)
3+un+1]

(7)

Where un represent the nth sample of mixed input signal, xn
is the nth sample of output x, h is the interval size. The follow-
ing dynamic behavior analysis of bistable potential is based on the 
Runge–Kutta algorithm.

3. Numerical simulation

It can be seen from the Eq. (6) that the system output x is 
related to several parameters. The Eq. (6) can be abbreviated as 
Eq. (8) in the method of numerical calculation.

x = F (a,b,h, fs,A, f,�) (8)

Where a and b are the potential parameters, h is an interval 
size which usually equals to 1/fs, fs is the sample frequency, A and f
are the key parameters of the input signal, � is the mixed noise. In 
order to study the characteristics of stochastic resonance in depth, 
we individually analyze each parameter by simulation to get the 
results of regularity.

3.1. Potential parameter a, b

The a and b are the barrier parameters of the bistable potential, 
which determine the shape of potential well and projection dis-
tribution of particles. Fig. 2 shows the projection of the identical 
cosine signal on different structures. The parameters of the cosine 
signal are A = 1, f = 0.01, and sample frequency fs=2. In Fig. 2, 
A.1, B.1, C.1 are the input–output diagram, the x-axis represents 
the output, the y-axis is the input signal, and the red curve is par-
tial derivative of potential V(x). A.2, B.2, C.2 are the corresponding 
output waveform. Panel A shows the particles oscillate inside the 
well along the red curve. Panel B shows the case where particles 
move across the obstacle to achieve inter-well oscillation. Panel C 
shows the particles achieve inter-well oscillation and the oscilla-
tion is period-3, which means that chaos will occur in the system 
[29,30]. Because the bistable stochastic resonance system is non-
linear and non-autonomous, it is found in subsequent experiments 
that the system does produce chaos under certain conditions.

3.2. Interval size h and sampling frequency fs

The h is the interval size, which essentially characterizes the 
calculated error. In the Runge–Kutta algorithm, the interval size h
affects a, b, and input signal u at the same time. Some scholars 
try to modify the interval size h to improve the output SNR [31]. 
For the sampling frequency fs, according to Shannon sampling the-
orem, in order to restore the analog signal without distortion, fs
should not be less than twice the highest frequency in the spec-
trum of the analog signal. Both of these two parameters affect 
accuracy. In this paper, the sampling frequency fs is set as more 
than 100 times of the signal frequency. Fig. 3 shows the output 
of the identical cosine signal sampled with different sampling fre-
quency. In the figure, A.1, B.1 are the input–output diagram, the 
x-axis represents the output, the y-axis is the input signal. A.2, B.2 
are the corresponding output waveform. Obviously, A.1 is in a bi-
furcated state and A.2 is not.

3.3. Pure periodic signal

To further observe the movement of particles in one potential 
well or between the wells, we put the signals which have the same 
period but with different amplitude into the identical bistable sys-
tem, and observe the output track. Fig. 3 illustrates what happens 
if amplitude A of the signal increases linearly, where a=1, b=1, 
f=0.01, fs=1, h=1.

It is clear that when input signal A <
√

4a3

27b the particles os-

cillate at one side, just as Fig. 4A shows. When A ≥
√

4a3

27b the 
particles can oscillate at both sides in a clockwise direction, just 
as Fig. 4B shows. We found that there exists a special threshold 
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