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In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch 
oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion 
relation, the formula of a semi-classical velocity is derived analytically, and then many aspects of Bloch 
oscillation, such as its frequency, amplitude, as well as the direction of the oscillation, are investigated. It 
is interesting to find that the electric field affects the component of motion, which is non-collinear with 
electric field, and leads the particle to be accelerated or oscillated in another component.

© 2018 Published by Elsevier B.V.

In the solid state physics, Bloch oscillation is an important phe-
nomenon. It is usually involved with the coherent motion of quan-
tum particles in periodic structures. For example, an electron (a 
matter wave) suffers this effect in a periodic lattice subjected to a 
constant external field. This phenomenon is predicted from quan-
tum mechanics in very early days [1,2] and has been demonstrated 
in various fields of physics, such as semiconductor superlattices 
[3,4], photonic crystals [5], cold-atom systems [6], and acoustic 
waves [7]. However, electric domains lead to the instability of the 
electric field and destroy the Bloch oscillation in the semiconductor 
superlattices, which requires a complex design to suppress electric 
domains [8].

On the other hand, since its discovery in 2004, graphene has 
attracted a tremendous amount of interest due to its unique prop-
erties that may promise a broad range of potential applications 
[9–14]. Recently, many theoretical and experimental investigations 
focus on the graphene-based superlattices with electrostatic po-
tentials or magnetic barriers [15–23], including periodic [24–27], 
aperiodic [28–30], disorder [31], and sheet arrays system [32]. Dif-
ferent from the common semiconductors, graphene superlattices 
can maintain a stable electric field due to the uniform population 
of the quantum well, which is induced by the back gate voltage, 
and some researchers have investigated the electronic Bloch os-
cillations in a structure with periodic potentials [33], a graphene 
nanoribbon with a hybrid superlattice [34], graphene superlattices 
with multiple Zener tunneling [35], a tilted honeycomb lattice for 
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the localized Wannier-Stark states [36], as well as the Bloch oscilla-
tions in the gapped graphene. It has been demonstrated that Bloch 
oscillations in graphene are different from that in common semi-
conductors, since the electron in graphene is described by Dirac 
rather than the Schrödinger equation. Moreover, the Bloch oscilla-
tion in graphene superlattices has potential applications on such 
as infrared detectors and lasers. One important issue still remains, 
that is, what does the electronic Bloch oscillation behavior in the 
gapless graphene?

Many aspects of Bloch oscillation can be obtained by a sin-
gle band description via using the dispersion relation to derive 
the semi-classical velocity of the particle. In this work, based on 
the electronic structure under tight-binding approximation, we de-
rive the motion of an electron in pristine monolayer graphene 
subjected to a constant external field. Within such a simple and 
efficient way, our results show several interesting phenomena of 
the electronic Bloch oscillation in graphene. For example, when the 
electric field is applied in one direction, the oscillation disappears 
in the x direction in a special condition, while it never happens 
in the y direction. Due to the linear dispersion relation, the am-
plitude and period of the oscillation are doubled as the particle 
passes through Dirac points, and its trajectory is almost a circle. 
In the following, we firstly derive the general formula of the mo-
tion of an electron based on the dispersion relations, and then we 
analyze the properties of the Bloch oscillation.

A monolayer graphene is well known for its honeycomb struc-
ture, and its dispersion relation can be written as [11]

E(k) = ±ε
√

3 + f (k), (1)
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where f (k) = 2 cos(
√

3aky) + 4 cos(
√

3
2 aky) cos( 3

2 akx). a ≈ 1.42 Å 
is the carbon-carbon distance, and ε ≈ 2.5eV is related to Fermi 
velocity (v F ≈ 106 m/s), h̄v F = 3

2 εa [11]. The signs “+” and “−” 
are, respectively, corresponding to the electron and hole energy 
band, which touch together at Dirac points (DPs). From Eq. (1), 
it is easy to find that the DPs are located at [ 4nπ

3a , 2√
3a

(2n ±
2
3 )π ], [ 2

3a (2n +1)π, 2√
3a

(2n ± 1
3 )π ] with n = 0, ±1, ±2, · · · . Accord-

ing to v = 1
h̄

∂E(k)
∂k [37], we can readily have v = (vx, v y) as the 

function of kx and ky ,

vx = ∓3εa sin( 3
2 akx) cos(

√
3

2 aky)

h̄
√

3 + f (k)
,

v y = ∓√
3εa[sin(

√
3aky) + sin(

√
3

2 aky) cos( 3
2 akx)]

h̄
√

3 + f (k)
, (2)

which show that vx and v y are the periodic functions of kx and 
ky , and the sign “−” (“+”) is corresponding to the velocities of 
electron (hole or hole-like electron). Basically, the Berry curvature 
should affect the trajectory of a wave packet undergoing Bloch 
oscillations in optical lattice [38], while in present system, the 
anomalous contribution does not show up since the Berry curva-
ture is just a monopole like contribution at the Dirac point for 
gapless graphene [39]. When a constant electric field E = (Ex, E y)

is applied along the layer of graphene, Dóra et al. showed that 
the velocity of massless Dirac electrons was pinned to the Fermi 
velocity in a finite field, and the electric field moved the Dirac 
point around in momentum space. Those special features imply 
that Dirac electrons in the electric field could be treated as crit-
ical particles, and their motion is a drift transport, so they move 
ballistically and leave their footprints [40]. Thus, the semiclassical 
approach should be valid, and we employ the electronic motion 
equation h̄ dk(t)

dt = −eE to describe the motion of Dirac electron, 
which survives as

kx(t) = kx(0) − eEx

h̄
t, ky(t) = ky(0) − eE y

h̄
t, (3)

where kx(0) and ky(0) are the initial wave-vector values. Substi-
tuting Eq. (3) into Eq. (2), we can obtain the dynamic formula 
for v . Therefore using Eqs. (2)–(3), we can analyze the motion 
of the electron or hole in graphene under the constant electric 
field. In particular, from Eq. (1), one can see that tight-binding ap-
proximations could describe both the conduction band and valence 
band, and the Dirac point moves continuously in momentum space 
and have not been destroyed under an electric field. On the other 
hand, previous study has also found that the behavior of the elec-
tron obtained by tight-binding is consistent with that from Bloch 
equations as the electron passes the Dirac point [41,42]. Thus, our 
formula is valid for dynamics involving band-crossing points. Since 
the direction of the electric field E can be chosen arbitrarily, we 
shall firstly discuss the electronic motion when E is only along the 
x (case I ) or y (case II) direction and then generalize it to an arbi-
trary direction (case III).

Case I: E along the x direction. In this case E y = 0, so we have 
ky(t) = ky = constant, and kx(t) = kx(0) − eEx

h̄ t . Assuming kx(0) = 0, 
the dynamic formula of vx and v y are

vx(t) = ∓3εa sin(− 2π
T t) cos(

√
3

2 aky)

h̄G(t)
, (4a)

v y(t) = ∓√
3εa[sin(

√
3aky) + sin(

√
3

2 aky) cos(− 2π
T t)]

h̄G(t)
, (4b)

where G(t)=
√

3 + 2 cos(
√

3aky) + 4 cos(− 2π
T t) cos(

√
3

2 aky), and

T = 4π
3

h̄
|aeEx| . From Eqs. (4a)–(4b), it is easy to see that v(t + T ) =

v(t) with T being the period of the motion. The frequency and 
circular frequency of the Bloch oscillation are generally given by

νB = 1

T
= 3

4π

|aeEx|
h̄

and ωB = 2πνB = 3

2

|aeEx|
h̄

, (5)

respectively. According to the expression of v , the time-dependent 
position r(t) of the electron is r(t) = r(0) + ∫ t

0 vdt , and here we 
assume the initial position r(0) = 0, i.e., x(0) = 0 and y(0) = 0. 
After a simple derivation, we obtain x(t) = C − s

eEx
G(t) where C

is an integration constant satisfying x(0) = 0. For y(t), we have to 
numerically calculate the following

y(t) = −2
√

3εωB

3eEx

×
t∫

0

sin(
√

3aky) + sin(
√

3
2 aky) cos(−ωBt)

G(t)
dt. (6)

According to the formula of x(t), we can have

xmax = C − ε

|eEx|

√
3 + 2 cos(

√
3aky) − 4| cos(

√
3

2
aky)|,

xmin = C − ε

|eEx|

√
3 + 2 cos(

√
3aky) + 4| cos(

√
3

2
aky)|. (7)

Therefore, the amplitude of the oscillation along x direction, Lx =
|xmax − xmin|, is given by

Lx = ε

|eEx| ||1 + 2 cos(

√
3

2
aky)| − |1 − 2 cos(

√
3

2
aky)||. (8)

When | cos(
√

3
2 kya)| ≥ 1

2 , Lx has its maximum value: Lmax
x = 2ε

|eEx| . 

When 
√

3
2 aky = (n + 1

2 )π , Lmin
x = 0. According to Eq. (8), if Ex =

4.61 mV/nm, (we set ε = 2.5 eV in the whole paper), Lmax
x ≈

1084 nm with νB ≈ 237 GHz. The amplitude and period of the 
clean graphene is larger than those of superlattices based on the 
graphene with the gapped band structure, which are around 30 nm 
and 0.8 ps, respectively [35].

Fig. 1(a) and (b) demonstrate the time dependence of vx and 
v y with different values of ky . It is found that when 

√
3

2 aky = π
3 , 

shown as the dash red lines, the electron passes through the DPs, 
and the period of vx and v y is doubled. Because the electron 
passes through the DPs, the electron transits into another band and 
behaves as a hole-like electron. After a period in another band, the 
hole-like electron behaves as the electron again. Therefore, the pe-
riod of the velocity becomes twice time, and correspondingly the 
amplitude is also doubled. This is quite different from the gapped 
case, where the Bloch oscillations originate from the interference 
between the electron and hole states [35]. There is an interesting 
phenomenon that, the oscillation along the x direction disappears 
although E is still along the x direction when 

√
3

2 aky = (n + 1
2 )π . 

Meanwhile, since v y �= 0, the oscillation in the y direction remains, 
see the solid blue lines (

√
3

2 aky = π
2 ) in Fig. 1(a) and (b). In other 

hands, if 
√

3
2 aky = nπ , we have v y = 0. It means that the oscilla-

tion in y-axis disappears and the oscillation in x-axis remains, see 
the solid dark lines in Fig. 1(a) and (b).

The corresponding electron’s trajectories are shown in Fig. 1(c), 
where we demonstrate the trajectory of an electron within three 
periods on the graphene layer. It is clear that, when the elec-
tron (or hole) passes through the DPs, its amplitude is doubled 
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