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We investigate the spin and charge Nernst effect of a four-terminal Aharonov–Bohm interferometer with 
Rashba spin–orbit interaction (RSOI). It is shown that a pure spin Nernst effect or a fully spin-polarized 
Nernst effect can be obtained by modulating the magnetic flux phase φ and the RSOI induced phase ϕ. 
It is also demonstrated that some windows of φ (or ϕ) for maintaining an almost fully spin-polarized 
Nernst effect exist and their width is under the control of the other phase. Moreover, for the charge 
Nernst coefficient Nc and spin Nernst coefficient Ns the relationship Nc(φ, ϕ) = −Ns(ϕ, φ) always holds. 
These results suggest that our proposal may act as a controllable thermospin generator.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the major goals of spin caloritronics [1,2] is to explore 
spin-dependent thermoelectric effects due to potential applications 
in the development of spin-based electronic devices driven by 
thermal gradients. To date, spin-dependent thermoelectric effects 
in various materials and nanostructures have been investigated 
such as the spin Seebeck effect in magnetic materials [3,4] and 
heterojunctions [5–8], the anomalous Nernst effect in low dimen-
sional systems [9–13], the giant magnetothermoelectric effect in a 
magnetic tunnel junction [14], the thermospin effect in quantum 
dot (QD) systems [15–20], and the spin-dependent Seebeck effect 
in Aharonov–Bohm interferometers [21–26]. For instance, Yang and 
Liu [18] proposed that a serially coupled double dot with an ap-
plied magnetic field can be used as a pure-spin-current thermal 
generator. This effect originates from a mirror symmetry configura-
tion held by the two spin components of the electron transmission 
probability relative to chemical potentials. Recently, tremendous 
research interest about another spin-dependent thermoelectric ef-
fect called the spin Nernst effect [27–30] which refers to that a 
transverse spin current is created when the four-terminal system 
is subjected to a longitudinal thermal gradient has also arisen. The 
spin Nernst effect has been theoretically studied in a four-terminal 
cross-bar device [27]. The results show that the existence of RSOI 
leads to the appearance of the spin Nernst effect and the spin 
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Fig. 1. Schematic plot of the four-terminal double-dot interferometer with a longi-
tudinal temperature difference �T applied between lead-L and lead-R. A magnetic 
flux may be enclosed by the ring-shaped system.

Nernst effect is more sensitive to the disorder strength than the 
charge one. Though there has been some work on the spin Nernst 
effect, the study on the spin Nernst effect of QD systems is yet 
sparse in literatures.

In this work, we focus on a four-terminal double-dot interfer-
ometer with RSOI and a perpendicular magnetic flux. As depicted 
in Fig. 1, the temperature of lead-U and lead-D is set as the system 
equilibrium temperature T . A longitudinal temperature difference 
�T is applied between lead-L and lead-R, so that T L = T + �T /2
and T R = T − �T /2. By the calculations based on the nonequi-
librium Green’s function method and the Landauer–Buttiker (LB) 
formula, we will explore the influences of the dot energy level, the 
RSOI and the magnetic flux on the spin and charge Nernst effect 
in this system.
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2. Theoretical model

In the investigated device, the leads are all nonmagnetic and 
the RSOI only exists in the QDs, so the Hamiltonian of such a four-
terminal double-dot interferometer reads as

H =
∑
kσα

εkαC †
kασ Ckασ +

∑
iσ

εid
†
iσ diσ

+
∑

kσ iβ=L,R

(tβiσ C †
kβσ diσ + h.c.)

+ (tU 1σ C †
kUσ d1σ + tD2σ C †

kDσ d2σ + h.c.), (1)

where C †
kασ (Ckασ ) is the creation (annihilation) operator of an 

electron with the spin index σ (σ =↑, ↓ or ±) and energy εkα in 
lead-α (α = L, R, U , D). d†

iσ (diσ ) represents the creation (annihila-
tion) of an electron with energy εi in QDi (i = 1, 2). tαiσ describes 
the coupling between lead-α and QDi. Considering the RSOI in the 
two dots and the enclosed magnetic flux, the tunnel matrix ele-

ments are written as tL1σ = teiφ/4e−iσϕ1/2, tL2σ = te−iφ/4e−iσϕ2/2, 
tR1σ = te−iφ/4eiσϕ1/2, tR2σ = teiφ/4eiσϕ2/2, tU 1σ = t and tD2σ = t
where we only consider the symmetric coupling case and t is the 
common magnitude of the tunnel matrix elements. In the tunnel 
matrix elements, φ is the magnetic flux phase which relates to the 
magnetic flux 	 by the relation φ = 2π	/	0 with 	0 being the 
flux quantum and ϕi is the phase caused by the RSOI in QDi [31].

Employing the nonequilibrium Green’s function method, the 
spin-dependent electric current in lead-α Jασ (e = h̄ = kB = 1) can 
be derived as the LB formula form [32–35]

Jασ =
∑
β �=α

∫
dε

2π
Tαβσ (ε)[ fα(ε) − fβ(ε)], (2)

where fα(ε) = [e(ε−μα)/Tα + 1]−1 is the Fermi–Dirac distribution 
function in lead-α with μα and Tα being the chemical poten-
tial and temperature of lead-α. Tαβσ (ε) = T r[�α

σ Gr
σ (ε)�

β
σ Ga

σ (ε)]
is the transmission function which describes the ability of an elec-
tron with the spin index σ and the incident energy ε tunneling 
between lead-α and lead-β . Here �α

σ represents the line width 
function contributed by lead-α. In local basis, it is a 4 × 4 ma-
trix whose matrix elements are defined as �α

i jσ = 2πtαiσ t∗
α jσ ρα(ε)

where ρα(ε) denotes the density of electron states in lead-α. 
Within the wide-band approximation [36], ρα(ε) is usually taken 
as a constant. For simplicity, the four leads are supposed to be 
made of the same material. Then by defining � = 2πt2ρ with ρ
being the common density of electron states in the four leads, the 
line width functions can be expressed as

�L
σ = �

(
1 eiϕσ

e−iϕσ 1

)
, (3)

�R
σ = �

(
1 e−iϕσ

eiϕσ 1

)
, (4)

�U
σ = �

(
1 0
0 0

)
(5)

and

�D
σ = �

(
0 0
0 1

)
(6)

with ϕσ = φ−σϕ
2 and ϕ = ϕ1 − ϕ2. In the expression of the trans-

mission function, Gr
σ and Ga

σ are respectively the retarded and 
advanced Green’s function of the central scattering region in spec-
trum space. According to the Dyson equation, they can be calcu-
lated as

Fig. 2. (Color online.) The charge Nernst coefficient Nc and spin Nernst coefficient 
Ns versus the dot energy level ε0 for different φ with the parameter ϕ = 0.

Gr
σ = [Ga

σ ]† =
(

ε − ε1 + i
2 �11σ

i
2 �12σ

i
2 �21σ ε − ε2 + i

2 �22σ

)−1

, (7)

with �σ = ∑
α

�α
σ .

In the case of zero electric biases, i.e., μL = μR = μU = μD =
μ, we can define the spin-dependent Nernst coefficient Nσ =
J Uσ /�T to measure the ability to induce a transverse electric cur-
rent with the spin index σ by the longitudinal temperature differ-
ence �T . In the linear response regime, the temperature difference 
is very small. So after the Taylor expansion of the Fermi–Dirac 
distribution function to the first order in �T , the spin-dependent 
Nernst coefficient Nσ can be obtained as

Nσ = 1

4π

∫
dε(TU Rσ − TU Lσ )

ε − μ

T 2
f (1 − f ), (8)

where f is the Fermi–Dirac distribution function at zero bias and 
zero thermal gradient. Based on Eqs. (2)–(7), we arrive at

TU Rσ − TU Lσ = 8Y �3(sinϕσ + sin 2ϕσ )

Zσ
, (9)

in which Zσ = [2XY − 3�2 + �2(2 cosϕσ + cos 2ϕσ )]2 + 9(X +
Y )2�2, X = ε − ε1 and Y = ε − ε2. Combining Eq. (8) with Eq. (9), 
the spin-dependent Nernst coefficient Nσ can be evaluated. Finally, 
the spin (charge) Nernst coefficient can be defined as Ns = N↑−N↓
(Nc = N↑ + N↓), which is the measurement of the ability to gener-
ate a transverse spin (charge) current in response to the longitudi-
nal thermal gradient.

3. Numerical results and discussions

In the numerical calculations, we set � = 1 as the energy unit 
and the equilibrium system temperature T = 0.1. The dot energy 
levels of the two QDs are assumed to be identical (ε1 = ε2 = ε0). 
The chemical potential of the leads at zero bias μ is fixed to be 
zero throughout this paper. From Eqs. (8) and (9), we can easily 
find that TU Rσ − TU Lσ (Nσ ) is generally dependent on electron 
spin. This spin dependence can be ascribed to the RSOI induced 
spin-dependent phase participates in the quantum interference 
among different Feynman paths for electron tunneling from lead-
L(R) to lead-U and thus makes the quantum interference effect 
be spin-resolved, which indicates that the presence of the RSOI 
is a key factor for the occurrence of the spin Nernst effect in the 
present device. Therefore, as shown in Fig. 2 the spin Nernst co-
efficient remains zero with the change of ε0 due to the absence 
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