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The universal optical absorption is a fascinating property existing in certain two-dimensional (2D) 
materials. By introducing a general two-band k · p effective Hamiltonian, we demonstrate that the 
absorptance can manifest an universal value at the direct band-edge of 2D materials in three specific 
cases. However, for general 2D materials, the absorptance becomes nonuniversal. We investigate the 
dependency of absorptance on the band parameters of general 2D materials. The influences of band-
anisotropy and band warping are also considered. Interestingly, we find that the coherent interband 
coupling and the band warping are responsible for the occurrence of the saddle-point type of Van Hove 
singularity, which leads to strong light-matter interactions in 2D materials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, the first isolated two-dimensional (2D) material 
formed by a single layer of honeycomb-arranged carbon atoms, 
has been demonstrated to possess extraordinary properties com-
pared to its bulk counterpart [1,2]. However, graphene suffers from 
the weakness of zero band-gap, so that it cannot work as semicon-
ductors in transistor devices. Motivated by finding alternative 2D 
materials beyond graphene, a variety of atomically thin materi-
als, including silicene, germanene, transition metal dichalcogenides 
(TMDCs), few-layer black phosphorus and other 2D compounds 
have been theoretically proposed and experimentally prepared 
[3–9]. The researches of these 2D materials are now growing at 
a tremendous rate and are expected to have great impacts on the 
next-generation electronics and optoelectronics [10,11].

Among the unique properties of 2D materials, the optical ab-
sorption is the specially fascinating one. For example, the absorp-
tion of graphene is attested to be only determined by the universal 
value πα0 = 2.3% in a wide spectral range, where α0 ≈ 1/137
is the fine structure constant [12,13]. Interestingly, Fang et al. 
found this universal value also appear (approximately) in the quan-
tized absorption spectra of the free-standing InAs membranes [14], 
which implies there might be certain universal essence of 2D sys-
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tems underlying their optical absorptions [15]. However, we notice 
that there are exceptional 2D materials such as TMDCs which were 
reported to possess strong light-matter interactions and compli-
cated spectra other than the universal absorption [16,17]. In addi-
tion, the optical conductivity of a hybrid Dirac and Schödinger 2D 
system was revealed to be nonuniversal [18]. Therefore, it is of in-
terest to consider from a general point of view that with which 
features the 2D materials could exhibit the universal absorption, 
and how the absorptance would depend on the parameters of gen-
eral 2D materials.

In this paper, we derive a simple expression for the absorption 
coefficient due to the transition between the first valence band 
(VB) and conduction band (CB) of direct-gap 2D materials. We 
find the occurrence of universal absorption can be ascribed to the 
cancelation of the modular square of the interband velocity ma-
trix element, i.e., denoted by h̄2|vcv(k)|2, and the derivative term ∣∣∣ ∂(ε2

cv )

∂(k2)

∣∣∣, where εcv is energy difference between CB and VB, and k
is the magnitude of wave vector. For graphene (or isotropic Dirac 
fermion systems), this cancelation is exact. For other 2D materials 
with finite band-gap and/or mass terms, this cancellation is gener-
ally not hold. So the absorptance usually has light-frequency and 
band parameters dependency. However, the universal absorption 
can exist at the direct band-edge for certain kinds of 2D mate-
rials. By introducing a general two-band effective Hamiltonian of 
2D materials with k · p method, we can analytically derive the 
conditions for the occurrence of universal absorption at the di-
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rect band-edge. In addition, we also investigate the dependency 
of the absorptance on the parameters of 2D materials, includ-
ing the band-gap, remote-bands couplings, band-anisotropies and 
band-warping. These general considerations are helpful for the un-
derstanding of the optical properties of 2D materials.

This paper is organized as follows. In Sec. 2 we describe the 
general formalism of optical absorption and the low energy effec-
tive Hamiltonian of 2D materials. In Sec. 3, we first provide the 
analytical results of the absorptance at the direct band-edge and 
the absorptance of the isotropic 2D materials. Then we discuss the 
influences of the band-anisotropies and band-warping by the nu-
merical calculations. In Sec. 4 we give a brief summary and some 
conclusions.

2. Theoretical formalism

2.1. General formula of absorption coefficient

We shall start from the Hamiltonian of the light-matter in-
teraction. Under the illumination of a single-color light with fre-
quency ω, the total Hamiltonian can be written as

Ĥt = Ĥ + V̂ (t), (1)

where Ĥ is the effective Hamiltonian of the 2D material, V̂ (t) =
�̂e−iωt + �̂†eiωt represents the electron-radiation interaction, and

�̂ = e

iωm0
p̂ · E. (2)

Here, p̂ = m0v̂ is the momentum operator, m0 is the free electron 
mass, v̂ is the velocity vector operator and E is the complex am-
plitude of the electric field. In this paper, we focus on the optical 
transition between the first CB and VB in the low energy range, so 
we can consider a two-band model only consisting of the empty 
CB states |c, k〉 and the occupied VB states |v, k〉. Their energies 
are denoted by εck and εvk , respectively. The optical transition rate 
between CB and VB is given by the Fermi’s golden rule

W = 2π

h̄
|〈c,k|�̂|v,k〉|2δ(εcv − h̄ω), (3)

with εcv [≡ εcv (k)] = εck − εvk . The number of optical transitions 
per unit volume per unit time is

η = 1

ALz

∑
k

W = 1

(2π)2Lz

∫
B Z

W d2k, (4)

where A is area of the 2D material, Lz is the thickness of the 2D 
layer, and 

∫
B Z d2k represents the integration over the 2D Brillouin 

zone. The absorption power is equal to the loss of energy per unit 
volume per unit time due to the transitions, and can be given by 
ηh̄ω. Then the optical absorption coefficient can be defined as

α(ω) = Absoprtion power

Energy flux density of the light
= ηh̄ω

I
, (5)

where I = 2cnrε0(E · E∗) is the energy flux density of the light, c is 
the velocity of light, nr is the relative refractive index and ε0 is the 
vacuum permittivity.

For the absorption coefficient of the light linearly polarized 
along eμ , i.e., E = E0eμ(μ = x, y), one obtains

αμ(ω) = e2

4cnrωε0π Lz

∫
B Z

|vμ
cv(k)|2δ(εcv − h̄ω)d2k, (6)

where vμ
nn′(k) = 〈n, k|v̂ · eμ|n′, k〉 denotes the μ component of the 

velocity matrix element between |n, k〉 and |n′, k〉 state. Note in 

Eq. (6), the 2D integral containing delta function can be trans-
formed to the integral on the constant-energy contours determined 
by εcv(k) = h̄ω, as the following∫
B Z

|vμ
cv(k)|2δ(εcv − h̄ω)d2k

→ gs gv

∫
εcv=h̄ω

|vμ
cv(k)|2 dlk

|∇kεcv | , (7)

where gs and gv are the degrees of spin and valley degeneracy, 
respectively. gs and gv appear because they account for the num-
ber of identical constant-energy contours due to the degeneracies. 
If the material is illuminated by the unpolarized light, the unpo-
larized absorption coefficient can be given by α = (αx + α y)/2. By 
introducing the fine structure constant α0 ≡ e2/(4πε0ch̄), the un-
polarized absorption coefficient can be written in a simple form

α(ω) = 1

nr Lz
	(ω)α0, (8)

where 	(ω)α0 can be viewed as the dimensionless absorptance, 
and 	(ω) is the prefactor. It is convenient to perform the integra-
tion over the constant-energy contour in the polar coordinates sys-
tem. Let k ≡ (k, ϕ), where k and ϕ are the magnitude and azimuth 
angle of wave vector, respectively. One can find the relations dlk =√

k2 + (∂k/∂ϕ)2dϕ , and |∇kεcv | = √
(∂εcv/∂k)2 + (1/k · ∂εcv/∂ϕ)2. 

And on the constant-energy contours, one also has ∂k/∂ϕ =
−(∂εcv/∂ϕ)/(∂εcv/∂k). With these relations, we obtain a simple 
expression for the prefactor of dimensionless absorptance

	(ω) = gs gvh̄

2ω

∫
εcv=h̄ω

|vcv(k)|2
∣∣∣∣∂εcv

∂k

∣∣∣∣−1

kdϕ

= gs gv

2

∫
εcv=h̄ω

h̄2|vcv(k)|2
∣∣∣∣∂(ε2

cv)

∂(k2)

∣∣∣∣−1

dϕ, (9)

where |vcv(k)|2 ≡ |vx
cv(k)|2 + |v y

cv(k)|2. Obviously, we can see that 
if h̄2|vcv(k)|2 cancels with 

∣∣∣ ∂(ε2
cv )

∂(k2)

∣∣∣, the integral of Eq. (9) will 
give rise to a simple constant. While for the three-dimensional 
(3D) bulk materials, the integration over 3D Brillouin zone trans-
forms to the integral on constant-energy surfaces, which leads to a 
k-dependent integrand. And the k-dependent integrand always ap-
proaches 0 when k → 0. Therefore, for the 3D systems, one cannot 
expect an universal value of the absorptance. For the 2D systems, 

we can define a canceling factor � ≡ h̄2|vcv(k)|2
∣∣∣ ∂(ε2

cv )

∂(k2)

∣∣∣−1
. If �

equals to a simple constant C , the dimensionless absorptance of 
2D material will have the universal value C gs gvπα0.

In the case of graphene, this condition can be exactly fulfilled 
in the low energy range. Graphene has a Dirac-cone band structure 
near the K (K ′) point with the CB and VB formed by π and π∗
states, respectively. Due to the symmetry of π and π∗ states, they 
approach each other (apart from a phase factor) in the limit k → 0. 
So |vcv(k)|2 can be approximately replaced by [19,20] |vcc(k)|2 =
|∇kεck/h̄|2. With the linear dispersion of Dirac cone, i.e., εc(v)k =
±h̄v F k, one can get

� = h̄2|∇kεck/h̄|2
∣∣∣∣∂(ε2

cv)

∂(k2)

∣∣∣∣−1

= 1

4
. (10)

Therefore, for graphene (gs = gv = 2), it can be shown that 	 =
gs gv · 1

4 ·π = π , which produces the well-known universal absorp-
tance πα0 of graphene.
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