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A B S T R A C T

Log D the logarithm (log10) of the distribution coefficient (D), is one of the important parameters used in
Lipinski's rule to assess the druggability of a molecule in pharmaceutical formulations. The distribution of a
molecule between a hydrophobic organic phase and an aqueous buffer phase is influenced by the pH of the
buffer system. In this work, we used both the conventional algebraic method and the generalized ‘dynamic’
approach to model the distribution coefficient of amphoteric, diamino-monoprotic molecule and monoprotic
acid in the presence of salt or co-solvent. We have shown the equivalence of these methods by analysing the
recently reported experimental data of amphoteric molecules such as nalidixic acid, mebendazole, benazepril
and telmisartan.

1. Introduction

Partition coefficient (P) is defined as the ratio of the concentration
of a molecule, whether in ionized or unionized form, distributed be-
tween a hydrophobic phase and an aqueous phase [1–5]. Consider, a
weak monoprotic acid, HA, which can exist in two forms such as, un-
ionized (HAa) and ionized ( −Aa ) species in an aqueous buffer system. If
such an aqueous buffer system is equilibrated with a hydrophobic sol-
vent (e.g. octanol), the unionized species and the ionized species in the
aqueous phase will get partitioned into the hydrophobic phase with the
partition coefficient defined by, =P HA HA[ ]/[ ]HA o a and

= − −−P A A[ ]/[ ]A o a , respectively. Since, it is less likely for a charged
species like −A , to get partitioned into an octanol phase, prior to par-
titioning it forms a neutral ion pair with prevalently available cation in
the aqueous solution. The distribution coefficient (D), on the other-
hand is dependent on the partition coefficient (P) and is defined as,

= + +− −D HA A HA A([ ] [ ])/([ ] [ ])o o a a , the ratio of the sum of the con-
centrations of both ionized and unionized species of a molecule, dis-
tributed between the hydrophobic organic phase and the aqueous
buffer phase. Since the dissociation of a weak monoprotic acid is de-
pendent on the pH of the aqueous buffer system, the distribution
coefficient also becomes dependent on pH . In an experiment designed

to assess the lipophilicity of a molecule, the distribution coefficient (D),
is measured at different pH conditions and the resultant profile of D, is
fitted to a model, to obtain partition coefficients (P), pKa or pKb of all
the species present in the system [1–5].

The mathematical model to predict the logD profile of simple cases
such as monoprotic, diprotic, mono-alkaline and amphoteric can be
easily derived using algebraic approach [6]. On the other hand, while
studying the effect of salt or co-solvent on the distribution of mono-
protic acid, dynamic approach is preferred because of its generality and
simplicity in deriving the models [3,5,7–9]. In this article, we explicitly,
derive the algebraic and dynamic models for amphoteric, di-amino-
monoprotic, and monoprotic in the presence of salt or co-solvent [7–9].
Further, the logD profiles of recently reported amphoteric molecules
such as nalidixic acid, mebendazole, benazepril and telmisartan, were
analysed to show the equivalence of dynamic approach and algebraic
method [10].

2. Theory

A complex dynamic system can be modelled using several analogous
kinetic mechanisms. If the experimental data points of the dynamic
system is available prior to equilibrium, then the exact kinetic
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mechanism can be delineated accurately. On the other-hand if the ex-
perimental data is available only at equilibrium, then several analogous
kinetic mechanisms can be used inter-changeably to determine the
equilibrium constants (SI 1 and 2). In logD analysis, since we deal with
systems that are at equilibrium, several analogous kinetic mechanisms
are available to model its data. Here we have considered previously
reported kinetic mechanisms for amphoteric, monoprotic acid in the
presence of salt (KCl) or co-solvent (DMSO) and diamino-monoprotic
amphoteric, to model the logD profile. Additionally, simple cases such
as monoprotic acid (SI.3), diprotic acid (SI.4), monoalkaline (SI.5) are
detailed in the supplementary information for pedagogic purpose.

2.1. Equivalence of analogous kinetic mechanisms at equilibrium

Considering a simple system with four states/species =N 4( ), A, B,
C , D; we show that several analogous kinetic mechanisms can be
framed to model it (SI 2). Firstly, we define the ‘analogous kinetic
mechanisms’ as a set of kinetic mechanisms whose equilibrium/steady
state concentrations are the same for its species across mechanisms. In
other words, even though the members of the ‘analogous kinetic me-
chanisms’ remain distinguishable through their distinct time profiles for
A, B, C , and D, prior to steady-state or equilibrium, they are indis-
tinguishable at steady state or equilibrium. If the equilibrium constants
for one of the members of ‘analogous kinetic mechanisms’ is known
then we can easily derive the equilibrium contants for the rest of the
members of ‘analogous kinetic mechanisms’, which is stated here as the
equivalence of the ‘analogous kinetic mechanisms’ at equilibrium.

If we consider each species as a ‘node’ and the interconnecting
equilibrium reactions as bidirectional ‘edges’, then the graph theory
suggest a maximum of = −E N N 1 2( )/max , edges or equilibrium re-
actions [11–13]. For a system with =N 4, species, there exist a
maximum of =E 6max , equilibriums. On the other-hand, a minimum of

= − =E N 1 3( )min , edges or equilibriums would be required to con-
nect all the four species to obtain a non-disjointed or ‘connected graph’.
With a minimum of 3 and a maximum of 6 equilibrums, there exist 38
different analogous kinetic mechanisms for a 4 species system (SI. 2).
Out of these 38 possibilities we will consider only two ‘analogous me-
chanisms’ to show their equivalence. Consider a simple linear me-
chanism (Fig. 1A) which minimally connects all the four species as
shown below (Eq. 1),
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In the above equilibrium, k1, k2, k3, are the forward and −k 1, −k 2,
−k 3, are the reverse rate constants for the reactions ⇌A B, ⇌B C ,
⇌C D, respectively. The three equilibrium constants K1, K2, K3 are
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, respectively. On the

other-hand consider a complex mechanism (Fig. 1B) which not only
includes Eq. 1, but also three additional equilibriums Eqs. 2–4,
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In the above equations (Eqs. 2–4), k4, k5, k6, are the forward and −k 4,
−k 5, −k 6, are the reverse rate constants for the reactions ⇌A C, ⇌B D,

⇌A D, respectively, and the corresponding equilibrum constants are
defined as =
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. If we assume both the

mechanisms to be analogous i.e, both lead to an identical ratios of A, B,

C , D, at equilibrium, then the equilibrium constants K4, K5, K6, are
dependent on K1, K2, K3 and can be easily derived by comparing a subset
of (Eq. 1) and (Eq. 2) to write the following equation (Eq. 5),

⇌ ⥫⥬ ≡ ⥫⥬A B C A C
K K K1 2 4 (5)

The comparison clearly shows that ⇌A C is an abstraction of
⇌ ⇌A B C, hence we can combine the corresponding equilibrium

constants and equate = ×K K K4 1 2. Similarly, based on the comparisons
of (Eq. 6) and (Eq. 7), we can write = ×K K K5 2 3 and = × ×K K K K6 1 2 3,
repsectively.

⥫⥬ ⇌ ≡ ⇌B C D B D
K K K2 3 5 (6)

⇌ ⇌ ⇌ ≡ ⥫⥬A B C D A D
K K K K1 2 3 6 (7)

Thus, we can conclude that if we have a kinetic mechanism with N
species, we would require a minimal of −N 1( ) equilibriums that un-
iquely connects these N species, so as to determine the additional
equilibrium constants existing in other ‘analogous mechanisms’. A
comparitive simulation of both these kinetic mechanisms (Fig. 1A, B)
using dynamic approach is shown in Fig. 1C & D, to highlight, their
differences during pre-steady state phase and their equivalence during
the steady state phase. In the following sections, one of the ‘analogous
kinetic mechanism’ that best represent the distribution of a molecule
between an aqueous buffer and octanol layer will be outlined. Based on
the proposed kinetic mechanism, the algebraic and the dynamic models
will be derived. The dynamic models proposed here make an assump-
tion that the mass transportation is instantaneously homogenous within
each liquid phases for all the species at all instance of time, i.e. perfectly
stirred system. The dynamic model for non-stirred systems, which will
not be discussed here, would require complex partial differential
equations that account for both the spatial and time dependence based
on Fick's second law of diffusion.

2.2. Amphotheric model for amino acids

2.2.1. Kinetic model for simple amino acids
Consider an amino acid − −NH R COOH BAH HAB( or or )2 containing

a weak mono-protic acid (COOH HAor ) and a weak basic/alkaline
group (NH Bor2 ) distributed between an aqueous buffer and an or-
ganic hydrophobic solvent (octanol) (Fig. 2A) [5,6,14]. In the aqueous
phase, the amino acid, − −NH R COOH HAB[ ]or [2 ], exists in an un-
ionized form − −NH R COOH[ ]a2 or HAB[ ]a , and the ionized forms,

− − −NH R COO[ ]a2 or −AB[ ]a , − −+NH R COOH[ ]a3 or +HABH[ ]a ,
− −+ −NH R COO[ ]a3 or +−ABH[ ]a . The equilibrium among these four states

can be written as (Eqs. 8–12),
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k1, k2, k4, k5, are the forward kinetic rates and −k 1, −k 2, −k 4, −k 5, are the
reverse kinetic rates for the dissociation of proton from the species,
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