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Technology life cycle analysis plays a crucial role in setting up investment-related strategies. The dominant
approach to technology life cycle analysis utilizes curve fitting techniques to observe technological performance
over time. However, doubts have been expressed about the accuracy and reliability of this method, due to its use
of single indicators and the necessity of making assumptions about pre-determined growth curves. As a remedy,
we propose a stochastic technology life cycle analysis that uses multiple patent indicators to examine a
technology's progression through its life cycle. We define and extract seven time-series patent indicators from
the United States Patent and Trademark Office database, and employ a hidden Markov model—which is an
unsupervised machine learning technique based on a doubly stochastic process—to estimate the probability of
a technology being at a certain stage of its life cycle. Based on this model, this paper also investigates patterns
of technology life cycles, future prospects of a technology's progression, and characteristics of patent indicators
between technology life cycle stages. The systematic process and quantitative outcomes the proposed approach
offers can facilitate responsive and objective technology life cycle analysis. A case of molecular amplification
diagnosis technology is presented.
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1. Introduction

Technology life cycle analysis has interested decisionmakers in both
industry and government who aim to set up investment-related strate-
gies. Prior literature has revealed that technologies' life cycles generally
go through four to six stages in terms of their competitive impact and
the integration of their products and/or processes, and that their relative
value depends on their life cycle stages (Ernst, 1997; Little, 1981;
McCarthy, 2003). While such conceptual frameworks have been widely
accepted in academia and practice, how best to use quantitative data
and scientific methods to identify a technology's current life cycle
stage and its future prospects (Albert et al., 2015; Gao et al., 2013;
Haupt et al., 2007) remains major questions for consideration by deci-
sion makers.

Modeling and analyzing a technology's progress through its life cycle
is a task beset with hazards, such as uncertainty, data unreliability, and
the complexity of real world feedback. As such, previous studies have
largely relied on expert knowledge (e.g. the use of analogies and Delphi
methods). Among others, probably themost scientific approach to tech-
nology life cycle analysis is offered by curve fitting techniques that fit
growth curves to time-series technology performance indicators and
extrapolate those curves beyond the range of the data to obtain esti-
mates of the technology's future prospects (Shin et al., 2013). Several
empirical studies have found that S- or double S-shaped evolutions

are typical (Achilladelis, 1993; Achilladelis et al., 1990; Andersen,
1999; Ernst, 1997). However, while all these studies have proved
quite useful for forecasting either the performance or substitution of
technologies, doubts about the method's accuracy and reliability have
been cast due to its use of single indicators (Gao et al., 2013; Haupt
et al., 2007; Watts and Porter, 1997), and the assumption that growth
curves are pre-determined (Lee et al., 2012a, 2012b). Moreover, the
interpretation of research results tends to be intuitive and ambiguous,
since this method still relies on experts at critical points. For example,
one might ask, what is the stage of a technology's progression when
the patent application count is 100? Can we say that the technology
has transitioned from one stage to another if the patent application
count changes to 150? Or is it just a fluctuation in the same stage? The
link between patent indicators and technology life cycle stages is still
missing.

These drawbacks necessitate the development of a new method to
trace the progression of a technology's life cycle, so that such analyses
can more adequately inform decision making. Three main issues are
key to this problem, and need to be addressed. First, in terms of the
idiosyncratic aspects of a technology's progress, a life cycle is specific
to an individual technology, and has its own dynamics and rules of evo-
lution (Lee et al., 2012a, 2012b; Shin et al., 2013). The classical bell-
shaped curve is the most common pattern, but it is not the only shape.
Many different patterns—such as cycle-recycle, rapid penetration, and
innovative maturity—have been discovered (Brockhoff, 1967; Cox,
1967; Cunningham, 1969; Kovac and Dague, 1972; Patton, 1959; Polli
and Cook, 1969; Rink and Swan, 1979): moreover, these patterns
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cannot easily be generalized and applied to new types of technologies
(e.g. converging technologies). Hence, previous determinisms based
on curve fitting techniques need to be extended to add more flexible
approaches to capture the different forms and shapes of technology
life cycles. Second, with respect to its intangible aspects, a technology's
life cycle cannot be observed directly, so neither the process of its
progression through that cycle, nor the stage it has reached, cannot be
ascertained fully: all we can observe are some proxy indicators that
may or may not be directly linked to a technology's progression.
Although a couple of studies have discussed the characteristics of such
indicators for technology life cycle analysis (Haupt et al., 2007), there
exists little theoretical understanding about, and has been little meth-
odological investigation into, the complex interactions between proxy
indicators and the stages of a technology's progression. So these indica-
tors need to be further investigated to estimate the life cycle stages of an
object technology, and to facilitate firms' stage-customized decision
making. Last—but not least from a practical standpoint—some re-
searchers argue that expert-centric approaches are better methods,
since such issues as using single indicators or method complexity are
less critical. However, expert-centric approaches need to be supported
by good quality and well-organized information, since they can be
time-consuming, costly, and inconsistent (Kostoff, 1998; Shibata
et al., 2008). In this respect, such methods as the use of analogies1 and
k-nearest neighbors algorithms2 have been suggested, but are of little
help to industrial practitioners since it is almost impossible to obtain
the historical information about the evolutionary patterns of similar
earlier technologies that such methods require. Thus any approach
that is proposed needs to allow for the speedy analysis of a wide
range of technologies without the need for supplementary information,
so that its results can support decisionmaking by showing the plausible
prospects of a technology in the face of future uncertainties at accept-
able levels of time and cost.

Considering these issues, we propose a stochastic technology life
cycle analysis approach to identifying the stage of a technology's prog-
ress through its life cycle using multiple indicators extracted from a
large-scale scientific and technical database. We chose patents as a
data source for this research because first, almost 80% of technological
information can be found in patent publications, which are considered
valuable data sources, since they are published according to internation-
al standards (Lee et al., 2011); second patents include not only techno-
logical but also managerial information, such as countries, assignees,
and inventors (Geum et al., 2013); third, patents provide information
about technology life cycles before the start of product (Agarwal,
1998; Gort and Klepper, 1982) or industry life cycles (Debackere et al.,
2002;McGahan and Silverman, 2001), and so can assist firms inmaking
timely decisions about new businesses; and finally, the scope of the
information patents offer is global, and so applicable to a wide range
of technologies (Lee et al., 2009).

The tenet of this research is that significant changes of patent indica-
tors can provide valuable information on a technology's progression
from one stage to another during its life cycle. To this purpose, we first
define and extract seven time-series patent indicators—patent activity,
technology developers, technology scope, prior knowledge, technology
value, duration of examination processes, and protection coverage.
We then employ a hiddenMarkov model (HMM), which is an unsuper-
vised machine learning technique based on doubly stochastic process
(Rabiner and Juang, 1986), to estimate the probability of a technology

being at a certain stage of its life cycle. This method models the state
sequences that cannot be observed (i.e. technology life cycle stages)
based on the observation sequences (i.e. patent indicators) that the hid-
den states generate. The HMM is of practical use in that it does not need
any supplementary information such as pre-determined growth curves
and can be fully automated. The approach we propose therefore incor-
porates the issues noted above into a technology life cycle analysis
model, based on which, this paper also investigates technologies' life
cycles patterns, their future prospects based on their life cycle progres-
sions, and the characteristics of the patent indicators at their different
stages. We also develop a software system to automate our method,
allowing even those who are unfamiliar with patent databases and
complex models to benefit from our research results.

We applied the proposed approach to support Korean small and
medium-sized high-tech companies in conducting technology life
cycle analyses at the request of the Korea Institute of Science and Tech-
nology Information (KISTI). We adopted the United States Patent and
Trademark Office (USPTO) database for this research, since it contains
the most representative data for analyzing international technology.
Our experience showed that the approach enables diverse technologies
to be analyzed swiftly, and provides objective evidence for its results.
Moreover, ourmethod enables us to perform systematic and continuous
monitoring of the progression of a technology's life cycle, yielding high
potential benefits at relatively low cost. The results of our case study
also enable us to identify a way to improve the proposed approach,
which we expect to be a useful complementary tool to support experts'
decisionmaking, especially for small andmedium-sized high-tech com-
panies that are considering entering new technology areas, but which
have little domain knowledge, and in dynamic industry environments
where technology monitoring is indispensable. We believe the system-
atic process and quantitative outcomes our approach offers can facilitate
responsive and objective technology life cycle analysis.

This paper is organized as follows. Section 2 presents the back-
ground to our research, and Section 3 explains our research frame-
work, which is then illustrated by a case study of a molecular
amplification diagnosis technology in Section 4. Finally, Section 5
gives our conclusions.

2. Background

2.1. Quantitative approaches to technology life cycle analysis

The notion of technology life cycles was first introduced by Little
(1981). Since then, most studies on technology life cycle analysis have
been based on the firm assumption that a technology (or a group of
technologies) has a cycle of four stages—introduction, growth, maturity,
and saturation—according to its competitive impact and the integration
of its products and/or processes. Following this assumption, early
research attempted to figure out an S- or double S-curved technology
progression to anticipate the technologies' futures, based on curve fitting
techniques using technology performance indicators (Achilladelis et al.,
1990; Achilladelis, 1993; Andersen, 1999; Ernst, 1997).

Highlighting possible avenues for methodological adaptation, there
have been certain recent shifts in the directions of research on technol-
ogy life cycle analysis, from curve fitting techniques using single tech-
nology performance indicators, to interdisciplinary approaches using
multiple indicators. We can summarize the major studies' results as
follows: Haupt et al. (2007) identified six patent indicators to detect
the changing stages of a technology's progression by examining signifi-
cant changes in their means; Järvenpää et al. (2011) investigated
the characteristics of technology life cycle indicators extracted from
different databases including USPTO, Science Citation Index (SCI),
Compendex, and LexisNexis; and Hikkerova et al. (2014) identified
the two main factors that determine technology life cycles at the indi-
vidual patent level. There is a consensus among these studies that no
single indicator can possibly reflect a technology's progression fully.

1 Thismethod anticipates the evolution of a technology based on the growth patterns of
similar earlier technologies, assuming that the greater the similarity, the more likely the
pattern will pertain. However this method is subject to certain limitations that stem from
lack of inherent necessity, historical uniqueness, historically conditioned awareness, and
casual analogy (Martino, 1993).

2 This method stores all available cases and classifies new cases based on a similarity
measure. However, the values of dependent variables must be known for a sufficiently
large part of the data set to apply supervised data mining techniques (Bishop, 2006).
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