
Forecasting new product diffusion with agent-based models

Yu Xiao a,⁎, Jingti Han b,c

a School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China
b School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
c Laboratory Center, Shanghai University of Finance and Economics, Shanghai 200433, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 7 August 2015
Received in revised form 16 January 2016
Accepted 27 January 2016
Available online 23 February 2016

Agent-basedmodel (ABM) has beenwidely used to explore the influence of complex interactions and individual
heterogeneity on the diffusion of innovation, while it is seldom used as a forecasting tool in the innovation diffu-
sion literature. This paper introduces a novel approach of forecasting new product diffusionwith ABMs. The ABM
is built on the hidden influence network (HIN) over which the innovation diffuses. An efficient method is pre-
sented to estimate non-structural parameters (i.e., p, q and m) and a multinomial logistic model is formulated
to identify the type of the HIN for diffusion data. The simulation study shows that the trained logistic model per-
forms well in inferring the HINs for most simulated diffusion data sets but poorly for those generated by ABMs
with similar HINs. Therefore, to reduce the possible prediction loss arising from the misspecification of the
HIN, three methods, namely, the predicted HIN, the weighted averaging and simple averaging, are developed
to forecast new products diffusion. Their performances are evaluated by using a data set composed of 317 time
series on consumer durables penetration. The results show that most identified HINs have moderate topology,
and that our methods outperform four classical differential equation based diffusion models in both short-
term and long-term prediction.
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1. Introduction

Modeling and forecasting new product diffusion has been the focus
of marketing research since the publication of a few seminal works,
i.e., Rogers and Shoemaker (1971), Bass (1969), Fourt and Woodlock
(1960). Bass (1969) supposes that the diffusion process of a new prod-
uct is driven by the innovative and imitative inclination of the target
population. The innovative inclination is influenced by external factors
such as advertisement or pricing strategy, and the imitative inclination
by those factors determining the strength of neighborhood influence.
The Bassmodel is extended in a number of ways, such as addingmarket
variables (Kalish, 1985), pricing and adverting variables (Bass, 2004),
and seasonal trends (Peers et al., 2012; Fernández-Durán, 2014),
allowing cross-country markets (Talukdar et al., 2002) and multi-
generation of products (Jiang and Jain, 2012), or dividing the potential
market into two segments—influentials and imitators (Van den
Bulte and Joshi, 2007). For more detail, refer to literature reviews
such as Chandrasekaran and Tellis (2007); Meade and Islam
(2006) and Peers et al. (2012).

Most of the above diffusion models are differential equation based.
An inherent flaw is their incompetence of flexibly incorporating net-
work structure or individual heterogeneity, because they gain ground
on the premise that a potential market is perfectly mixing or can be

divided into several perfectly mixing segments. This premise has been
increasingly challenged since the discovery of some common social net-
work properties, such as “small world” effect (Watts and Strogatz,
1998), power-law degree distribution (Barabási and Albert, 1999), and
social components (Maslov et al., 2004). These factors' influences on
the diffusion process are widely exploited theoretically (Choi et al.,
2010; López-Pintado, 2008) and validated empirically (Centola, 2010).
A diffusion model not taking into account network structure would
get biased penetration forecasts for a new product.

In this paper, wemodel the diffusion of new product over a network
using a parsimonious agent-based model (ABM). The ABM is built on
the hidden influence network (HIN), whose edge is defined as the influ-
ence that plays a role in the adoption of a new product between neigh-
boring customers. The HIN does not refer to the overt network via
which individuals communicate with each other in daily life, but rather
refers to the active subset of the full social network for the diffusion
process. This concept has been also taken by Watts and Dodds (2007)
to examine the influence of influential nodes on the cascade of public
opinion formation, and by Trusov et al. (2013) to improve the pre-
launch diffusion forecasts.

We assume that an agent's adopting decision is influenced by its in-
novativeness and susceptibility to the neighboring agents' adoption, a
rule consistent with the Bass (1969) model. We differ from, however,
most existing models in applying an asynchronous state update rule
(Harvey and Bossomaier, 1997; Cornforth et al., 2005). The asynchro-
nous rule defines that, in each time step, all agents decide whether to
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adopt the innovation in a random and exclusive sequence. Intuitively, if
the time intervalwere very long, i.e., a season or year, the early adopters
in this interval, as the adopters in the previous intervals, would also im-
pact the decision of potential customers. From this view of point, the
ABM with this rule applies to aggregate-level penetration time series
composed of yearly or monthly data points.

To this point, it's essential to note that our focus is not on developing
a completely new ABM that is meant to replace others, but rather on
providing a novel way of calibrating the ABM and consequently making
it an efficient and economical forecasting tool. Most existingABMs in in-
novation diffusion studies are developed to analyze the influence of in-
dividual heterogeneity or network structure on diffusion processes.
Only a limited number of researchers have incorporated network prop-
erties in their new product forecasting models (Dover et al., 2012;
Trusov et al., 2013). Their methods, however, pose rigid restrictions on
diffusion data and are thus not suited for most common empirical diffu-
sion time series.

We introduce a novel procedure to calibrate the ABM using
aggregate-level diffusion data. The procedure consists of a two-stage
method for estimating the non-structural parameters (i.e., p, q and
m) and a discriminate model for identifying the best HIN among a
group of networks. For the estimation of non-structural parameters,
the first stage is to store a wide range of diffusion rate curve generated
by the ABM, along with the corresponding parameter values, in a data
set; the second stage is to search out the optimal potential market for
each curve to best fit with the target diffusion data and, finally, to take
the one with the least sum of squares of errors (SSE) as the estimates
of the ABM. The data set can be repeatedly used, thus greatly reducing
the computing consumption when there are overwhelming fitting
tasks.

Unlike the non-structural parameters, the HIN is a complex compo-
nent of the ABM. It is impossible to find the optimal HIN from the space
composed of all possible networks. Therefore, similar to Trusov et al.
(2013), we identify the best HIN among a group of HINs, which have a
few common structural properties of empirical social networks. In
detail, we define three discriminative indices dependent on the relative
explanatory and predictive performances of a group of ABMs, whose
relationship with the class of potential HIN is formulated by a multino-
mial logisticmodel. Thismodel enables us to identify the bestHIN (or its
analog) for diffusion data, thus improving the penetration forecasts.

We evaluate the performance of the above methods through
conducting extensive simulation experiments. As shown in the simula-
tion study, the recovery of the “true” HIN is not successful in some situ-
ations. Therefore, we further propose three forecasting methods,
namely, the predictedHIN, theweighted averaging and the simple aver-
aging. The predictedHINmethod takes the forecast solely from the ABM
with the predictedHIN,while theweighted or simple averagingmethod
combines forecasts from all the ABMs.

Our work meets the recent call for a rigorous use of ABM in the
study of diffusion of innovation (Rand and Rust, 2011). Both the sim-
ulation and empirical studies show that our approach has better pre-
dictive performance than classical differential equation based
diffusion models, i.e., the Bass model, Gamma/Gompertz model,
Gamma/Shifted Gompertz model and Weibull model. This result is
consistent with Dover et al. (2012), but it comes from fitting
market-level penetration data usedmostly by classical aggregate dif-
fusion models. Moreover, we find that most of the predicted HINs for
empirical penetration data are similar to a random regular network,
and only a small proportion is similar to a lattice network or a ran-
dom network with high variance of degree distribution.

The rest of this paper is organized as follows. In Section 2, we
demonstrate the relevance of our work for the innovation diffusion
literature. In Section 3, we build an asynchronous ABM on the HIN. In
Section 4, we present a fast method to estimate non-structural parame-
ters, and develop a discriminate model to identify the HIN of the ABM.
In Section 5, we perform a number of simulation experiments to show

the efficiency and consistency of our methods, and also propose three
forecasting methods based on the ABM. In Section 6, we conduct the
empirical study to test the performance of the forecasting methods.
We discuss our findings and make conclusions in Section 7.

2. Prior work

Many new product or technology forecasting models can be traced
back to the Bass (1969)model. This model can be interpreted in a num-
ber ofways, one ofwhich is that all potential buyers are located in a fully
connectedHIN (Fibich andGibori, 2010), and the behavior of a potential
buyer is determined by its innovativeness and susceptibility. Similar to
the Bass (1969) model, most market-level diffusion models can also
be transferred into a fixed HIN version, but they do not provide amech-
anism to vary the HINs in their models.

Agent-based model provides that kind of mechanism, and has been
used widely in the innovation diffusion literature (Garcia and Jager,
2011; Kiesling et al., 2012). For example, Watts and Dodds (2007) use
a parsimonious agent-based model to examine the “influential hypoth-
esis”, i.e., whether influential are important to the formation of public
opinion; Hanaki et al. (2007) study the cooperative behavior emerging
in an environment where individual behaviors and interaction struc-
tures coevolve; Choi et al. (2010) base a simple computational model
on small-world graphs to examine the role of network structure and
network effects in the success of global diffusion; Goldenberg et al.
(2010) challenge the conventional wisdom that network externalities
lead to faster diffusion due to the network effect; Kuandykov and
Sokolov (2010) examine the effect of network structure on S-shaped
diffusion curves; Stummer et al. (2015) build an ABM that deals with
repeat purchase decisions, the competitive diffusion of multiple prod-
ucts, and both the temporal and the spatial dimension. The above stud-
ies use ABM to examining the possible influences of network structure
or individual heterogeneity on diffusion phenomena, rather than to
quantitatively predicting the diffusion of new products or technologies.
Here, we focus on developing a valid and efficient calibrating method
for the ABMusing only aggregate-level diffusion data, and consequently
take the ABM as a forecasting tool.

Recent work highlights the importance of forecasting new product
diffusion by taking network structure into consideration (Iygengar
et al., 2011; Stephen and Toubia, 2010). A few researchers have built
forecasting methods based on ABMs, and showed their superiority
over classical market-level models in prediction performance. For ex-
ample, Dover et al. (2012) propose a two stepwise estimation procedure
for their network diffusion forecast model. The first step is to estimate
the constraints among network parameters and the p, q; the second
step is to simulate adoption patterns over random networks with the
identified constraints, which are used to fit to the empirical diffusion
data. They show that the incorporation of network information in diffu-
sionmodels can significantly improve the predictive performance. Their
success in detecting the network, however, depends on the quality of
diffusion data. For example, in their empirical study, the selected diffu-
sion data comprises at least 50 points of data and has an identifiable
peak with relatively smaller fluctuations, which is not typical for com-
mon market-level penetration data.

Trusov et al. (2013) fit the Bass model to diffusion data generated in
a social network, and compare the joint probability distribution of esti-
mates for a number of empirical diffusion time series with the joint
probability distributions for several simulated data sets. The optimal
network of the empirical diffusion data set can be identified by this ap-
proach, thus improving the prediction of early diffusion. However, this
method depends on a hypothesis that all the empirical diffusion data
are generated in the same social network, limiting its practical
application.

Our approach is different from the above studies, because we fit the
ABM to the very common empirical penetration data that own a rela-
tively large disturbance and only a few data points and that are also
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