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Time series of US patents permillion inhabitants show cyclic structureswhich can be attributed to
the different knowledge-generating paradigms that drive innovation systems. The changes in the
slopes between the waves can be used to indicate efficiencies in the generation of knowledge.
Whenknowledge-generating systems are associatedwith idem innovation systems, the efficiency
of the latter can be modeled in terms of interactions among dimensions (for example, in terms of
university–industry–government relations). The resultingmodel predicts an increase in efficiency
with an increasing number of dimensions due to the effects of self-organization among them. The
dynamics of the knowledge-generating cycles can be analyzed in terms of Fibonacci numbers;
successive cycles are expected to exhibit shorter life cycles than previous ones. This perspective
enables us to forecast the expected dates of future paradigm changes.
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1. Introduction

The explanation of economic change in terms of underlying
mechanismshas been central to evolutionary economics (Nelson
and Winter, 1982; Andersen, 1994). According to Schumpeter
(1939), the development of the economy is based on continuous
innovations. This is especially the case in the post-industrial
stage when the proliferation of knowledge can be considered as
an important source of consistent growth (Romer, 1986, 1990).
Studying Japan, Freeman (1987) first noted that knowledge
generation can only be economically successful if an innovation
system is in place (as a retention mechanism). Lundvall (1988,
1992) and Nelson (1993) elaborated on the systems perspective
in innovation studies. Porter (1990, 1998) abstracted from the
national context by focusing on “clusters” of innovations that
can be shaped differently in regional and/or national settings.
Gibbons et al. (1994) distinguished between a knowledge-

production paradigm in niches such as universities (“Mode
1”) and transnational and trans-disciplinary knowledge
production (“Mode 2”) driven by communication across
institutional borders. “Mode 2”was further elaborated in terms
of university–industry–government collaborations such as the
Triple Helix model (Etzkowitz and Leydesdorff, 1995, 2000).

Initially, the concept of an innovation system was devel-
oped with a focus on national systems of innovation. In later
studies, the notion of smaller-sized innovation systems was
introduced, such as regional (Braczyk et al., 1998; Cooke, 2002),
sectorial (Breschi and Malerba, 1997; Malerba, 2005), techno-
logical (Carlsson and Stankiewitz, 1991; Carlsson, 2006), and
corporate innovation systems at different scales (Granstrand,
2000). A national system of innovations, as in the case of
Hungary, can also be comprised of a number of smaller regional
systems (Lengyel and Leydesdorff, 2011). This concept of nested
innovation systems was also proposed as a model for economic
development at the city level (Etzkowitz and Raiken, 1980).

The systems perspective relates to the evolutionary one
because a system is shapedwhendifferent selectionmechanisms
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operate upon one another. Two selection environments can
mutually shape each other in a coevolution along a trajectory,
but adding a third sub-dynamic can cause a bifurcation and
consequential transitions in the system at the regime level
(Dosi, 1982). Ivanova and Leydesdorff (2014) argued that
adding a third selection environment to a systemestablished in
terms of bilateral (e.g., university–industry) relations or
bilateral (e.g., government–university) policies can drastically
change the behavior of an innovation system because a third
sub-dynamics provides an additional source of variation that
continuously upsets previous tendencies toward equilibrium
(Nelson and Winter, 1982). Note that this accords with
Simmel's observation that the difference between social
dyads and social triads is fundamental; this difference refers
not so much to the number of participants as to more
fundamental issues, such as the quality, dynamics, and stability
of the resulting system (Simmel, 1950).

When referring to the innovation activity of a system, one
can use the notions of the capacity and efficiency of an
innovation system to distinguish among different systems and
inform policy choices. Various quantitative methods in which
input indicators are used to estimate output have been
developed to evaluate the capacity of an innovation system.
Cai (2011) categorized these methods into three categories:
Composite (Innovation) Indicators, Data Envelopment Analysis
(DEA), and Modelling/Econometric Approaches. The efficiency
of an innovation system, however, is difficult to specify because
of the complexity of and possible synergy among the innova-
tion activities, such as investments in R&D, the numbers of new
services and products, patents, and research (Hollanders and
van Cruysen, 2008); adequate efficiency indicators are there-
fore difficult to construct. Another problem is that innovation
statistics is still rather uncertain, which leads to stochastic
fluctuations and consequently to difficulties in the estimation of
parameters.

The efficiency of an economic system can be defined
analogously to technical efficiency as the ratio of output to
input (Farrell, 1957). An innovation system can be considered
as efficient if it is able to produce themaximumpossible output
from a given amount of innovative input. Efficiency can then be
defined by using the knowledge production function (KPF)
with the number of patents as an output variable (Fritsch and
Slavtchev, 2010; Schmookler, 1962) that can be written as a
product of input variables (Griliches, 1979; Jaffe, 1989; Shelton
and Leydesdorff, 2012). The input variables can be rather
diversified, such as the level of R&D expenses, the number of
R&D employees, or the state of the technological, industrial,
and institutional infrastructures. However, one cannot include
all the factors that influence the capacity of an innovation
system because some of these factors cannot be measured. For
example, the interaction among different elements of an
innovation systemmay generate self-enforcing (auto-catalytic)
systemic effects that affect the performance of the system
(Leydesdorff and Fritsch, 2006).

When comparing innovation systems at the national or
regional level, it is thus possible that two systemsmay perform
unequally despite a set of equal input parameters, whereas one
would theoretically expect a more equal efficiency. This
discrepancy can be attributed to differences in the intensity
and quality of the interactions in the systems under study. In
other words, the analyst risks comparing non-comparable

systems, such as systems of a different nature or with different
structural organizations. The mechanism of self-organization,
lying at the origin of biological complexity, can also be expected
to provide system change in the economy (Tominomori, 2002)
by generating more efficient and more sophisticatedly orga-
nized systems under selection pressure. In summary, one can
expect to find a relation between the organizational efficiency
of a system and the level of the system's self-organization.

Our research question is to explore (i) the influence of
complexity in innovation systems on their knowledge-
generating performance, and (ii) regularities in the improve-
ments of the efficiency of the knowledge-generating system
over time. To this end, we compare the measurement results
with the maximal efficiencies that can be derived from a
theoretical model. The analysis is pursued at themacro-level of
the system. We use US patents as data for reasons that will be
specified, but which also limit the validity of our conclusions to
this domain.

The paper is organized as follows. In Section 2, the statistical
patent data (USPTO) are analyzed; and four distinctly shaped
cycles are distinguished during the period 1840–2013. These
cycles partially coincidewith the Kondratieff cycles. Amodel of
the efficiency of knowledge generation in innovation systems is
developed in Section 3. The model explains the empirical
findings in considerable detail. One conclusion of this model is
that the system's performance is proportional to the complexity
of the system. In Section 4, we discuss the perspectives of
extending themodel to a next-higher dimensionality in order to
specify expectations about changes in the driving knowledge-
generating paradigms. In Section 5, the results are summarized,
and policy implications are formulated in Section 6. The
mathematical derivations for calculating the dimensionality of
innovation systems are provided in two Appendices.

2. Data analysis using US patent data

The relations between input and output in innovation
systems are no longer unidirectional because of feedback loops
at the systems level. On the one hand, newly generated
technologies can be considered as inputs to the total produc-
tivity togetherwith the other knowledge carriers (Solow, 1957;
Coe et al., 2009). The number of patents can, on the other hand,
be considered as an indicator of the innovation capacity of a
system (Fritsch and Slavtchev, 2006). Patents first reflect
innovations in the databases for the purpose of legal protection
of intellectual property. Furthermore, there is a correlation
between the innovation capacity and a country's overall
competitiveness and level of prosperity (Porter and Stern,
2002). Economic growth implies and is dependent on the
growth of innovation efficiency. Patents have often been used as
a simplification of innovation indicators (Jaffe and Trajtenberg,
2002). However, there is no one-to-one correspondence be-
tween patents and innovations. Only a small percentage of
patents can be expected to be used in practice, and only a small
percentage of those patents used can be expected to pass to the
category of innovations. The drawback of using patent indicators
is that they are very uncertain as numbers of innovation output
(Romijn and Albaladejo, 2002). However, patents have been
used as a measure of the intensity of innovation activity (Porter
and Stern, 2002).
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