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This paper proposes a simple model selection test between the Gompertz and the Logistic
growth models based on parameter significance testing in a comprehensive linear regression.
Simulations studies are provided to show the accuracy of the method. Two real-data examples
are also provided to illustrate the implementation of the proposed method in practice.
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1. Introduction

Let Yt be a time series taking nonnegative values. The
Gompertz trend curve for Yt is given by

Yt ¼ α1exp −β1e
−γ1t

� �
; ð1Þ

and the Logistic trend curve for Yt is given by

Yt ¼ α2 1þ β2e
−γ2t

� �−1
; ð2Þ

where t represents time and αi, βi, and γi, i = 1, 2, are
positive parameters. Model (1) and Model (2), together with
their multi-response and multivariate generalizations, are
now widely used in applied research work for modeling and
forecasting the behavior of many diffusion processes like the
adoption rate of technology based products (Chu et al., 2009;
Gamboa and Otero, 2009), population growth (Nguimkeu and
Rekkas, 2011; Meade, 1988), and marketing development
(Mahajan et al., 1990; Meade, 1984). In fact, the Gompertz

and Logistic curves both share the interesting property that
their “S-shaped” feature is suitable to describe processes that
consist of a slow early adoption stage, followed by a phase of
rapid adoption which then tails off as the adopting population
becomes saturated. However, despite these visual and numer-
ical similarities there are fundamental differences between the
two curves and one of the most important is that the Gompertz
function is symmetric whereas the Logistic function is asym-
metric. Failing to account for these differences and choosing an
inappropriate growth curve for inference can lead to seriously
misleading forecasts (see Chu et al., 2009; Yamakawa et al.,
2013 for some empirical illustrations). The need to develop a
reliable selection procedure to discriminate between the two
models in practice is therefore salient.

Unfortunately, despite the important request to select
between these models in practice, there rarely exists a
framework for statistical test between the two. The selection
is usually made in an ad hoc basis using criteria based on
forecasting errors, on the plausibility of the estimated satura-
tion levels, or on visual evidence obtained from plotting the
data in a special way, see for example, Gregg et al. (1964). A
notable exception is the approach of Franses (1994) who
proposed a selection based on statistical significance testing in
an auxiliary regression which we briefly discuss in Section 2.
Other approaches used are based on criteria of fitness that
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require to actually estimate the two models and then compare
their fits with historical data through measures like R2, root
mean squared errors (RMSE), mean absolute percentage error
(MAPE), rootmean squared prediction errors (RMSPE) (see Chu
et al., 2009; Yamakawa et al., 2013). Such a procedure is
however not attractive as it requires to estimate both models
by nonlinear regression methods involving numerical optimi-
zation which is usually computer expensive and time consum-
ing. There is thus a clear need for selection methods between
Gompertz and Logistic models which are easy to understand
and inexpensive to compute. In this context, it seems natural
to investigate the use of statistical tests that require simple
estimation and easy computation.

This paper proposes a model selection test based on one
linear regression and the significance test of one parameter. Our
approach is therefore similar in spirit to the one proposed by
Franses (1994) who also based their method to a single
parameter significance testing. However, whereas the Franses
(1994) method requires to primarily impute the original data in
order to get only strictly positive increments of Yt, our approach
is based on the original responses themselves regardless of their
values. Thus, there is no loss or distortion of information that
could possibly undermine the result of our test which at the
same time is more straightforward to compute. We examine the
empirical size and power performance of the proposed test
through Monte Carlo simulations and also provide real data
examples to illustrate its usefulness in practice. The results show
that the proposed test performs reasonably well in finite
samples and could be a better alternative to the Franses' test.

In Section 2 we discuss the transformations of the
Gompertz and Logistic curves leading to our selection
procedure as well as the difference between our test and the
Franses (1994) method. Section 3 provides numerical studies
including Monte Carlo simulations and two real-data exam-
ples. Some concluding remarks are given in Section 4.

2. The selection procedure

Recall that Yt is our variable of interest and denote by yt =
(Yt − Yt − 1)/Yt − 1 the relative increase in Yt.1 Let the Gompertz
response function in Eq. (1) be denoted by g tð Þ ¼ α1exp
−β1e−γ1tð Þ: Differentiating g(t) and rearranging terms yield

g0 tð Þ
g tð Þ ¼ γ1 lnα1−lng tð Þ½ �:

This suggests setting up a simple linear regression for the
Gompertz model given in Eq. (1) with the form

yt ¼ δ1 þ ρ1lnYt−1 þ u1t : ð3Þ

Likewise, if we denote by h tð Þ ¼ α2 1þ β2e−γ2tð Þ−1 the
Logistic response function in Eq. (2), a similar manipulation
leads to the differential equation

h0 tð Þ
h tð Þ ¼ γ2 α2−h tð Þ½ �:

Hence, a linear regression model of the form

yt ¼ δ2 þ ρ2Yt−1 þ u2t ð4Þ

can be set up for the Logistic model given in Eq. (2). Testing
Model (1) against (2) is therefore equivalent to testingModel (3)
against (4). Models (1) and (2) aswell asModels (3) and (4) are
clearly nonnested in the sense of Cox (1961). For the latter
models, it is desirable to usehigher frequencydata, if available, so
that the first-derivative approximation by the difference score is
more precise. However, regardless of the time frequency, the
decision-rule provided by the test discussed below should not
change, so long as one has enough data and one uses a definition
of first-derivative that is consistent with the frequency of the
data and is applied alike to both competitive models.

Following Davidson and MacKinnon (1981), an artificial
comprehensive model can therefore be formulated as follows:

yt ¼ δþ γ lnYt−1 þ θYt−1 þ ut ; ð5Þ

where μt is an error term. It can be seen thatwhen θ = 0,Model
(5) reduces to (3). Thus, it might seem that to test (3) against
(4) we could simply estimate this model and test whether θ =
0.2 However, for the types of applications we consider here (i.e.
growth curves), the series of interest, {Yt}, will usually display
an upward trend with no tendency of mean reversion, thus
implying that they are non-stationary (Franses, 1998, pp.
67-68). Estimation of Model (5) using ordinary least squares
might then lead to a spurious regression with an inconsistent
estimate of θ (see, e.g., Hamilton, 1994, pp. 557-562, for a
thorough discussion). In order to avoid spurious regressions,
the simplest and most recommended way to base a test on
Model (5) is to estimate a differenced version of it given by3

Δyt ¼ μ þ γΔ lnYt−1 þ θΔYt−1 þ ϵt ; ð6Þ

where ϵt is the error term which can be assumed to be
NID(0, σ2). We can estimate Model (6) by ordinary least
squares and test the null hypothesis that θ = 0 using an
ordinary t-test for a desired significance level. This provides an
easy and reliable way to test for Eq. (3). Alternatively, we could
test for γ = 0, which would correspond to the logistic model
given by Eq. (4). Since this can be done by simply interchanging
the roles of the two models in all the following discussions, we
focus on the former case in the rest of the paper, for brevity.4

Note that the inclusion of the constant term μ is not strictly
needed for the comprehensive specification of the

1 One may instead consider yt = (Yt + 1 − Yt)/Yt or the approximation
yt = logYt − logYt − 1 and the results discussed would be similar.

2 This idea is similar to the J test that was first suggested by Davidson and
MacKinnon (1981) for nonnnested regressions.

3 Although many researchers recommend routinely differencing non-
stationary variables before estimating regressions, differencing may not be
needed in the exceptional circumstance where the variables are
cointegrated. In this case it is preferable to perform our selection test over
Model (5), since differencing may cause a reduction of power (thanks to an
anonymous referee for pointing this out). In our numerical applications,
preliminary analysis has shown that they are not cointegrated. Cointegration
tests are easy to perform and are available in most standard statistical
software.

4 Δ ln Yt − 1 and Δ Yt − 1 cannot be perfectly correlated (since one cannot
be obtained as an affine transformation of the other). However, it is good
practice to examine the magnitude of the squared correlation of the two
regressors and verify that collinearity is not present in the model; otherwise
simply testing individual coefficients might not be sufficient. In our
empirical examples, no evidence of collinearity was found.
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