**ARTICLE IN PRESS** 

Advanced Powder Technology

Advanced Powder Technology xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

## Advanced Powder Technology

journal homepage: www.elsevier.com/locate/apt



## Hydrothermal synthesis of nanoplates assembled hierarchical h-WO<sub>3</sub> microspheres and phase evolution in preparing cubic Zr(Y)O<sub>2</sub>-doped tungsten powders

Fangnao Xiao<sup>a</sup>, Qiang Miao<sup>a,\*</sup>, Shizhong Wei<sup>b,\*</sup>, Wenping Liang<sup>a</sup>, Xiaoman Fan<sup>b</sup>, Kunming Pan<sup>c</sup>, Liuiie Xu<sup>c,\*</sup>

<sup>a</sup> College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210000, China

<sup>b</sup> National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China

<sup>c</sup> Henan Key Laboratory of High-temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471003, China

#### ARTICLE INFO

38 19 Article history: 20 Received 12 March 2018 21 Received in revised form 17 July 2018 22 Accepted 19 July 2018

- 23 Available online xxxx
- 24 Keywords:
- 25 h-WO3

10 11

12

13

14 16

- 26 Hydrothermal process
- 27 Tungsten powders 28 **Zirconia**
- 29
- Phase evolution 30

#### ABSTRACT

Three-dimensional hierarchical h-WO<sub>3</sub> and doping tungsten powders have recently attracted considerable attention because of their superior sensing properties and refined grains, respectively. In this article, we report a facile hydrothermal hydrogen reduction process for preparing hierarchical h-WO<sub>3</sub> microspheres that self-assemble with nanoplates. Meanwhile, the phase evolution process and evolution mechanisms during the conversion of h-WO<sub>3</sub> to W are systemically investigated. Results indicate that the highly homogeneous h-WO<sub>3</sub> microspheres are uniformly covered with ultrafine ZrY<sub>2</sub>(OH)<sub>10</sub> micelles, which fully transform into m-WO<sub>3</sub> and cubic Zr(Y)O<sub>2</sub> after calcination at 600 °C. Microspheres possessing different pore diameters and containing nanosized particles can be obtained by adjusting the hydrogen reduction process. These phase evolution process can provide reasonable guidance for preparing tungsten oxide with high electrochemical properties and ultrafine tungsten powders. The h-WO<sub>3</sub> microspheres with an average size of 3 µm consist of nanoplates and the tungsten powders doped with 1.0 wt% Zr  $(Y)O_2$  have a mean particle size of approximately 1.4  $\mu$ m. Comparative test results indicate that the addition of 1.0 wt% Zr(Y)O<sub>2</sub> can promote the formation of low-degree particle agglomerates. © 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46 47 48

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

#### 49

#### 1. Introduction 50

In recent years, considerable attention has been devoted to the 51 preparation the hexagonal form of tungsten trioxide (h-WO<sub>3</sub>) that 52 is highly sensitive to different gases, photocatalytic splitting of 53 water for hydrogen generation, and simple fabrication of display 54 panels, smart windows, and mirrors. [1-3]. To date, the different 55 morphologies of WO<sub>3</sub> in nanowires [4,5], nanotubes [6], nanorods 56 57 [7], and nanoplates [8,9] are obtained by various reaction methods, including electrochemical techniques, hydrothermal reaction, and 58 template-based rheological phase reaction [10-12]. However, 3D 59 hierarchical architectures with 1D or 2D nanocrystals reportedly 60 exhibit sensing properties superior to those of structures with 61 62 low dimensions [13]. Therefore, 3D hierarchical nanomaterials

assembled with 2D nanocrystals have captured a great deal of attention in current research works.

Herein, we report a facile hydrothermal route for the preparation of h-WO<sub>3</sub> microspheres self-assembled by 2D nanoplates. However, over the past years, oxide dispersion-strengthened tungsten has attracted a great deal of attention in current research [14,15]. The reason is that they can refine grains by promoting grain nucleation, hindering grain growth, and gathering impurities, such as O. N. and P. owing to strong rare-earth interaction, which separates on grain boundaries (GB) and decreases GB cohesion [16]. Nevertheless, the mechanical behaviors of tungsten materials are determined by the quality of tungsten powders [17–19]. Fu et al. [20] and Gamble et al. [21] found that the flowability of powders is considerably influenced by particle morphology and dimension. He [18] also reported that the properties of the tungsten products are mainly dependent on the properties of the starting tungsten reactant, namely, particle morphology, distribution, and size. Ultrafine and nanocomposite powders can significantly reduce the sintering activation energy of powders and promote

#### https://doi.org/10.1016/j.apt.2018.07.011

0921-8831/© 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Please cite this article in press as: F. Xiao et al., Hydrothermal synthesis of nanoplates assembled hierarchical h-WO<sub>3</sub> microspheres and phase evolution in preparing cubic Zr(Y)O<sub>2</sub>-doped tungsten powders, Advanced Powder Technology (2018), https://doi.org/10.1016/j.apt.2018.07.011

<sup>\*</sup> Corresponding authors.

E-mail addresses: miaoqiang@nuaa.com (Q. Miao), hnwsz@126.com (S. Wei), wmxlj@126.com (L. Xu).

137

138

139

140

143

144

145

162

165

166

167

168

169

2

82

83

84

85

86

87

88

F. Xiao et al./Advanced Powder Technology xxx (2018) xxx-xxx

excellent sintering process, eventually forming nanostructure materials [22,23]. In addition, impurities in tungsten powders (e.g., O and N) separate at GBs that decrease the GB cohesion [24,25], resulting in weak GB and further forming low ductility of tungsten alloys. Thus, the importance of high-quality of tungsten powders in the preparation of high-performance tungsten products continues to grow.

Liquid–liquid doping methods combined with hydrogen reduction process were conducted for the synthesis of oxide dispersionstrengthened tungsten and molybdenum materials. Nanoscale oxide particles were used, and most of them were homogeneously dispersed in tungsten grain interior [26–32]. However, studies on the phase evolution and structures of tungsten powders prepared by liquid–liquid doping methods are few.

96 In this work, tungsten powders with uniform distribution of 97 ZrO<sub>2</sub> particles were obtained by the hydrothermal in-situ hydrogen 98 reduction process. We proposed an optimized process for prepar-99 ing h-WO<sub>3</sub> precursor and yttrium-stabilized zirconia  $(Zr(Y)O_2)$ doped tungsten powders. The phase, morphology and microstruc-100 ture of powders prepared at different stages were characterized. In 101 102 addition, the phase evolution process and its evolution mecha-103 nisms were investigated.

#### 104 2. Experimental procedure

#### 105 2.1. Chemical composition of alloys

The raw materials used for the synthesis of the  $W-Zr(Y)O_2$  pow-106 ders were ammonium metatungstate ((NH<sub>4</sub>)<sub>6</sub>H<sub>2</sub>W<sub>12</sub>O<sub>40</sub>·5H<sub>2</sub>O; 107 grade AR; 99.9% purity), zirconium nitrate ((Zr(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O; grade 108 109 AR; 99.9% purity), and yttrium nitrate ((Y(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O; grade AR; 110 99.99% purity). The five types of W-Zr(Y)O<sub>2</sub> powders containing 111 0%, 0.5%, 1.0%, 1.5%, and 5.0% zirconia were denoted as Z<sub>0</sub>, Z<sub>0.5</sub>, 112 Z<sub>1.0</sub>, Z<sub>1.5</sub>, and Z<sub>5.0</sub> samples, respectively, as listed in Table 1. Moreover, ZrO<sub>2</sub>-Y<sub>2</sub>O<sub>3</sub> powders containing molar ratio Zr:Y = 88:12 were 113 114 denoted as ZY sample.

#### 115 2.2. Preparation of W-Zr(Y)O<sub>2</sub> powders

116 The procedure employed for the preparation of  $W-Zr(Y)O_2$  pow-117 ders were as follows: 250 g (NH<sub>4</sub>)<sub>6</sub>H<sub>2</sub>W<sub>12</sub>O<sub>40</sub>·5H<sub>2</sub>O was dissolved 118 in distilled water. The pH of the resulting was adjusted to 2.0 by 119 adding a nitric acid solution under stirring. Next, the clear solution was transferred into a 500 ml Teflon-lined stainless-steel auto-120 clave. Meanwhile, a certain amount of Zr(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O and Y(NO<sub>3</sub>)<sub>3</sub>-121 122 ·6H<sub>2</sub>O with [Zr<sup>4</sup>+]:[ Y<sup>3</sup>+] molar ratio of 88:12 and stoichiometric 123 amount of urea related to the equilibrium of the chemical reaction 124 (Eq. (4) were placed into another autoclave (60 ml). The filling fac-125 tor was maintained at 80% by adding distilled water. The auto-126 claves were sealed and heated at 3.5 °C/min until the desired 127 temperature of 170 °C was reached. After the reaction was com-128 pleted, the autoclaves were naturally cooled to room temperature. 129 Some distilled water was added into the mixture of two kinds of reaction products, followed by stirring for no less than 2 h using 130 an electric mixer. After being filtered, the powders were dried 131

| <b>'able 1</b><br>Themical composition of the samples. |          |                         |                                 |
|--------------------------------------------------------|----------|-------------------------|---------------------------------|
| Sam.                                                   | W (wt %) | ZrO <sub>2</sub> (wt %) | Y <sub>2</sub> O <sub>3</sub> ( |
| Z <sub>0</sub>                                         | 100      | 0                       | 0                               |
| Z <sub>0.5</sub>                                       | 99.43    | 0.50                    | 0.07                            |
| Z <sub>1.0</sub>                                       | 98.87    | 1.00                    | 0.13                            |
| Z <sub>1.5</sub>                                       | 98.31    | 1.50                    | 0.19                            |
| Z <sub>5.0</sub>                                       | 94.37    | 5.00                    | 0.63                            |
| ZY                                                     | 0        | 87.30                   | 12.70                           |

overnight in an oven at 90 °C, and the precursor powders were132obtained. The precursor powders were calcined at 600 °C for 4 h,133followed by hydrogen reduction under dry hydrogen in a tube furnace (6 L/min) at different temperature, forming the W-Zr(Y)O2135powders.136

### 2.3. Measurement and analysis

The internal stress was estimated using the XRD pattern in combination with the Williamson-Hall equation [33]:

$$\beta \cos \theta = 0.9(\lambda/d) + 2\varepsilon \sin \theta \tag{1}$$

where  $\beta$  is the full width half maximum of the XRD peak,  $\theta$  is Bragg angle,  $\lambda$  is the X-ray wave length, *d* is crystallite size and  $\varepsilon$  is internal stress.

The crystalline phases and reactions of the powders were deter-146 mined through X-ray diffraction (XRD) analyses. The reflex index-147 ation and the unit cell parameter calculation were carried out by 148 using the JADE 5.0 software complex. Particle morphology and size 149 were investigated with VEGA-SBH scanning electron microscope. 150 Transmission electron microscopy (TEM) and High-resolution 151 transmission electron microscopy (HRTEM) observations were car-152 ried out on a Phillips (Titan 80-300 FEI) operated at 200 K. The par-153 ticle size distributions of the powders were measured in the 154 aqueous phase using the Mastersizer-2000 laser diffraction particle 155 size analyzer. The dispersion medium is the mixture of ethanol and 156 glycerol, and the dispersing agent is sodium polyphosphate. The 157 specific surface area was measured with a BET surface area analysis 158 instrument (Autosorb-1, Quantachrome, USA). The average particle 159 sizes of these doped tungsten powders were calculated based on 160 the BET specific surface area using the following equation [33]: 161

$$d_{BET} = 6/(S_{BET} \cdot \rho_{Theory}) \tag{2}$$

where  $d_{BET}$  is the average particle size,  $S_{BET}$  is the powder specific surface area,  $\rho_{\text{Theory}}$  is the theoretical density of tungsten, i.e. 19.3 g/cm<sup>3</sup>.

#### 3. Results and analysis

3.1. Analysis of precursor and calcined powders

Fig. 1 shows the XRD patterns of  $Z_{5,0}$  and ZY samples before and 170 after calcination at 600 °C for 4 h, respectively. As shown in Fig. 1A, 171 intense and sharp diffraction peaks are observed, indicative of 172 high-degree crystallinity for two types of powders. The XRD pat-173 terns of precursor powder (Fig. 1A (a)) show these diffraction peaks 174 agree well with the standard data file (PDF#85-2460, a = b = 7.324175 Å, c = 7.662 Å). Thus, these powders can be indexed to the hexago-176 nal WO<sub>3</sub> (h-WO<sub>3</sub>). Interestingly, no peaks of any other phases con-177 taining Zr elements are detected in the XRD patterns of Fig. 1A(a), 178 indicating the formation of pure h-WO<sub>3</sub> under these experimental 179 conditions. This is because the mixture of  $Zr(OH)_4$  and  $Y(OH)_3$ 180 formed in hydrothermal reaction cannot decompose into ZrO<sub>2</sub>, 181 Y<sub>2</sub>O<sub>3</sub>, and H<sub>2</sub>O during the drying process at 90 °C; thus, wide peaks 182 are observed, indicating a very poor crystallinity as shown in 183 Fig. 1B(a). However, Fig. 1A(b) shows diffraction peaks of Z<sub>5.0</sub> cal-184 cined powders at 23.2°, 23.7°, and 24.4° as the major intensity 185 peaks, followed by three peaks at 33.4°, 34.0°, and 34.3°. They were 186 assigned to the (001), (020), (200), (021), (201), and (220) 187 crystal planes of monoclinic WO<sub>3</sub> (m-WO<sub>3</sub>) (PDF#75-2072, 188 a = 7.274 Å, b = 7.501 Å, and c = 3.824 Å), indicating that the189 h-WO<sub>3</sub>·H<sub>2</sub>O fully transformed into m-WO<sub>3</sub> after calcination at 190 600 °C. Detailed examination of the patterns reveals that an appar-191 ent peak at about 30°, which is the strongest one assigned to the (1 192 11) crystallographic plane of stabilized ZrO<sub>2</sub> phase. However, 193

Please cite this article in press as: F. Xiao et al., Hydrothermal synthesis of nanoplates assembled hierarchical h-WO<sub>3</sub> microspheres and phase evolution in preparing cubic Zr(Y)O<sub>2</sub>-doped tungsten powders, Advanced Powder Technology (2018), https://doi.org/10.1016/j.apt.2018.07.011

(wt %)

Download English Version:

# https://daneshyari.com/en/article/8965072

Download Persian Version:

https://daneshyari.com/article/8965072

Daneshyari.com