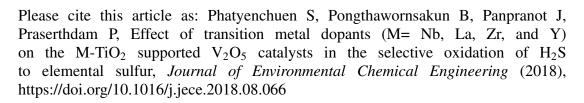
## Accepted Manuscript

Title: Effect of transition metal dopants (M= Nb, La, Zr, and Y) on the M-TiO<sub>2</sub> supported  $V_2O_5$  catalysts in the selective oxidation of  $H_2S$  to elemental sulfur

Authors: Suvijak Phatyenchuen, Boontida Pongthawornsakun, Joongjai Panpranot, Piyasan Praserthdam


PII: S2213-3437(18)30519-0

DOI: https://doi.org/10.1016/j.jece.2018.08.066

Reference: JECE 2614

To appear in:

Received date: 15-5-2018 Revised date: 6-7-2018 Accepted date: 27-8-2018



This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

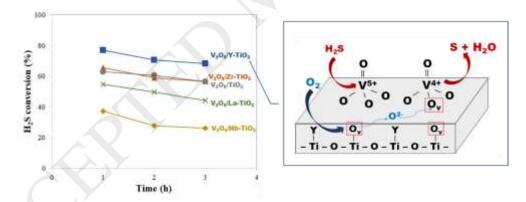


## ACCEPTED MANUSCRIPT

#### **Revised Manuscript**

Effect of transition metal dopants (M= Nb, La, Zr, and Y) on the M-TiO<sub>2</sub> supported V<sub>2</sub>O<sub>5</sub> catalysts in the selective oxidation of H<sub>2</sub>S to elemental sulfur

Suvijak Phatyenchuen, Boontida Pongthawornsakun, Joongjai Panpranot, Piyasan Praserthdam


Center of Excellence on Catalysis and Catalytic Reaction, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand

Tel. 66-2218-6861 Fax. 66-2218-6877 E-mail: <u>piyasan.p@chula.ac.th</u> (P. Praserthdam)

**Date:** July 6, 2018

**Submitted to:** *Journal of Environmental Chemical Engineering* 

#### **Graphical abstract**



### **Highlights:**

- Low temperature selective H<sub>2</sub>S oxidation on modified-TiO<sub>2</sub> supported V<sub>2</sub>O<sub>5</sub>.
- P-25 TiO<sub>2</sub> was modified by addition of different dopants (Nb, La, Zr, and Y).
- V<sub>2</sub>O<sub>5</sub>/Y-TiO<sub>2</sub> showed highest H<sub>2</sub>S conversion at ~77% with low SO<sub>2</sub> formation.
- Y addition promoted more surface oxygen formation than that of Zr.
- Nb or La addition suppressed surface oxygen being formed.

<sup>\*</sup> To whom correspondence should be addressed.

#### Download English Version:

# https://daneshyari.com/en/article/8965096

Download Persian Version:

https://daneshyari.com/article/8965096

<u>Daneshyari.com</u>