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a b s t r a c t 

We propose a new feature representation algorithm using cross-covariance in the context of deep learn- 

ing. Existing feature representation algorithms based on the sparse autoencoder and nonnegativity- 

constrained autoencoder tend to produce duplicative encoding and decoding receptive fields, which leads 

to feature redundancy and overfitting. We propose using the cross-covariance to regularize the feature 

weight vector to construct a new objective function to eliminate feature redundancy and reduce overfit- 

ting. The results from the MNIST handwritten digits dataset, the NORB normalized-uniform dataset and 

the Yale face dataset indicate that relative to other algorithms based on the conventional sparse autoen- 

coder and nonnegativity-constrained autoencoder, our method can effectively eliminate feature redun- 

dancy, extract more distinctive features, and improve sparsity and reconstruction quality. Furthermore, 

this method improves the image classification performance and reduces the overfitting of conventional 

networks without adding more computational time. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Feature representation is an integral component of any object 

recognition task. A meaningful and representative feature can help 

obtain higher recognition and classification accuracies [1–6] . Au- 

toencoder (AE) networks [7] , an important branch of deep learning, 

have been widely used for feature extraction and are unsupervised 

in nature since they do not require labels for learning the features. 

The AE process takes the original object as its goal for network 

training, and the original object can be represented by extracting 

the representative features from the encoding layer. The unsuper- 

vised nature of the AE imparts unique advantages in terms of fea- 

ture representation and learning, and researchers proposed some 

improved models of AE for specific problems in different fields [8–

19] , such as how to recover human pose from videos or images is a 

key issue in the field of human action recognition, researchers con- 

struct multi-modal or multi-task deep AE to achieve human pose 

recovery [13,14] . To improve the imaging quality of low-dose com- 

puted tomography (CT) images, researchers built stacked sparse 
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denoizing AE for low-dose CT restoration [15] . In the field of im- 

age retrieval and ranking, scholars use AE to initially obtain dis- 

tance metric in different visual spaces and construct a new rank- 

ing model [16] . In the field of driving behavior analysis, scholars 

use deep sparse AE to learn the multi-dimensional driving behav- 

ior hidden features for the mass driving behavior data acquired 

through the CAN bus to distinguish different styles of driving be- 

havior [11] . In addition, scholars have realized multi-class classifi- 

cation by constructing a new AE expansion model such as denoiz- 

ing AE, sparse AE and group sparse AE [18–20] . 

The AE architecture contains two types of parameters: nodes 

and weighted connections (filters or receptive fields (RFs)) [20–22] . 

As the number of nodes in the hidden layers increases, the number 

of weight parameters to be learned exponentially increases, which 

causes an important challenge in which the network parameters 

tend to overfit to the given training data [20] . 

Furthermore, our observations and those of other researchers 

[12,23,24] indicate that when models present high levels of over- 

fitting, this condition is typically accompanied by the redundancy 

of feature weights. As a result, slight differences in feature weights 

capture similar patterns (classes) and affect the feature representa- 

tion of models. This condition is particularly evident in [12] , which 

presents a large number of similar weighted connections learned 

by the conventional sparse autoencoder (SAE) and nonnegativity- 

constrained autoencoder (NCAE) models, resulting in many ex- 

tracted features that are duplicative and redundant. 
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In the present study, we focus on solving the problems of fea- 

ture weights’ redundancy and overfitting in conventional SAE and 

NCAE models. To this end, we propose using the cross-covariance 

(XCov) to regularize the feature weights. The proposed regulariza- 

tion method aims to reduce feature weights’ correlation to mini- 

mize the XCov between all pairs of weight vectors in the encoding 

layer. Thus, redundant feature weights can be eliminated, extract- 

ing more distinct features and reducing overfitting. 

Works related to ours include the following: 

(i) XCov regularization [25–27] . Here, the researchers regular- 

ized the hidden layer activations by XCov and used the XCov 

function as a cost function to train the model. In contrast, 

we focus on the weight correlations rather than activation 

independence. Therefore, our algorithm directly regularizes 

the feature weight connections and not the hidden layer ac- 

tivations. 

(ii) Orthogonal / correlation weight regularization. These works 

describe cosine similarity [28] , deep canonical correlation 

analysis (deep CCA) [29] and correlational neural networks 

(CorrNets) [30] . Researchers have used the correlation coef- 

ficient/cosine similarity between feature weights to express 

the strength of the associated relationships. Our metric is 

different from that method; we use the XCov as a metric to 

measure the relationship between feature weight vectors. 

(iii) The classic regularization methods include dropout [31] , 

drop connect [32] , and batch normalization [33] . Dropout 

aims to reduce co-adaptation of activations by randomly 

dropping units and their connections. Dropping weights 

with drop connect prevents feature co-adaptation. Batch 

normalization focuses on faster optimization by reducing in- 

ternal co-variate shift, which is the constant variation of a 

layer’s input as the process learns. 

(iv) With feature weight clusters [12,34] , researchers have used 

offline and online agglomerative clustering. This approach 

aims to reduce the number of feature weights according to 

the differentiation of weights based on their distances and 

the reconstruction error value. Different from previous ap- 

proaches, we do not change the number of hidden layer 

nodes and feature weights. We directly introduce the con- 

cept of XCov into the cost function to minimize the XCov 

between feature weight vectors. Furthermore, related work 

on the K-sparse AE [35–37] aimed to reduce the number of 

feature weights by sorting the hidden units’ activations and 

retaining the k largest units while setting the rest to zero. 

This method is similar to the feature weight cluster; the key 

idea is to reduce the number of feature weights. 

Based on the previous research on the SAE [38–40] , NCAE 

[8,10] and other derived works [12,34] , the primary contributions 

of this study are as follows. (1) We propose a new feature weight 

regularization algorithm that uses the XCov to regularize the fea- 

ture weights. We construct a new cost function for network train- 

ing to eliminate feature redundancy, extract more representative 

and distinct hidden features and achieve better data reconstruction 

capabilities. In this way, the feature representation capabilities of 

the conventional NCAE model can be enforced. (2) Furthermore, we 

improve the image classification performance of the NCAE model 

to reduce overfitting. 

This paper is organized as follows. 

Section 2 introduces the basic theory of AE, SAE and NCAE. 

Section 3 introduces the proposed XCov regularization algorithm, 

and the solution for the optimization cost function is derived. 

Section 4 discusses the performance of the proposed algorithm 

and compares this algorithm with the SAE [40] , NCAE [8,10] , 

agglomerative clustering-SAE (Agglo-SAE) [12,34] and agglomera- 

tive clustering-NCAE (Agglo-NCAE) [12,34] in terms of eliminat- 

ing the feature weight redundancy on several datasets (namely, 

MNIST, NORB and Yale). Then, we verify that our proposed method 

provides significantly better image classification performance on 

the MNIST and NORB datasets than the related deep networks 

(DNs) reported in the literature based on the SAE [40] , NCAE [8] , 

Agglo-SAE [12,34] , Agglo-NCAE [12,34] , Decov [25] and dropout AE 

(DpAE) [41] . Section 5 summarizes the results obtained and dis- 

cusses the future work. 

2. Nonnegativity-constrained autoencoder 

An AE neural network is an unsupervised feature learning 

framework that tries to reconstruct its input vector at the output 

through unsupervised learning [21,42] . The general schematic of 

the AE is shown in Fig. 1 . The network tries to learn a function 

r = f w , b (x) ≈ x (1) 

where x is the input vector and r is the reconstructed vector. In 

addition, W = {W 

(1) , W 

(2) } and b = {b (1) , b (2) } represent the weights 

and biases of the encoding and decoding layers, respectively. To 

optimize the parameters of the model in ( 1 ), the average recon- 

struction error is used as the cost function 

J AE (W , b) = 

1 

2M 

M ∑ 

m =1 

∥∥r (m ) − x (m ) 
∥∥2 

(2) 

where M is the number of training samples. 

To prevent overfitting in the AE, when the elements of W be- 

come large, we limit the elements of W with the L2 norm as a 

penalty term. In addition, we require that the future hidden lay- 

ers are sparse since we wish to obtain more prominent features; 

therefore, we use the Kullback–Leibler (KL) divergence [43,44] to 

calculate the sparse item. Thus, the objective function of a conven- 

tional SAE has three components [8,45,46] 

J SAE (W , b) = J AE (W , b) + 

α

2 

2 ∑ 

l=1 

s l ∑ 

i =1 

s l−1 ∑ 

j=1 

( ω i j 
(l) ) 

2 + βJ KL (p ‖ ̂

 p ) (3) 

The first term on the right side of ( 3 ) is the reconstruction er- 

ror. The second term represents the weight penalty term ɑ that 

can control the strength of the penalty term ω 

l 
i j 

that expresses the 

connection between the j th unit in layer L -1 and the i th unit in 

layer l . The third term is the sparse item β used to adjust the size 

of the term. The sparse term is 

J KL (p ‖ ̂

 p ) = 

n ′ ∑ 

j=1 

p log 
p 

p j 
+ (1 − p) log 

1 − p 

p j 
(4) 

where n’ is the number of hidden layer nodes and p is the sparsity 

target chosen to be a small positive number near 0. The average 

activation of this hidden unit is 

p j = 

1 

M 

M ∑ 

m =1 

h j ( x 
(m ) ) (5) 

To constrain the conventional SAE to extract non-negative la- 

tent features, the second term (i.e., the weight decay term) in ( 3 ) 

is replaced with J N in ( 6 ) to penalize the negative weights [47] 

J N ( ω i j 
(l) ) = 

α

2 

2 ∑ 

l=1 

s l ∑ 

i =1 

s l−1 ∑ 

j=1 

{
( ω i j 

(l) ) 2 ω i j 
(l) < 0 

0 ω i j 
(l) ≥ 0 

(6) 

We ultimately obtain the following cost function for the NCAE 

[8] : 

J NCAE (W , b) = J AE (W , b) + J N ( ω i j 
(l) ) + βJ KL (p ‖ ̂

 p ) (7) 
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