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a b s t r a c t 

We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the 

weights fixed as the unit coordinate vectors of the d -dimensional Euclidean space and having 3 d + 2 

number of hidden neurons in total, which can approximate any continuous d -variable function with an 

arbitrary precision. This result, in particular, shows an advantage of the TLFN model over the single hid- 

den layer feedforward neural network (SLFN) model, since SLFNs with fixed weights do not have the 

capability of approximating multivariate functions. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The topic of artificial neural networks is an important and vi- 

brant area of research in modern science. This is due to a large 

number of application areas. Nowadays, neural networks are be- 

ing successfully applied in areas as diverse as computer science, 

finance, medicine, geology, engineering, physics, etc. Perhaps the 

greatest advantage of neural networks is their ability to be used 

as an arbitrary function approximation mechanism. In this paper, 

we are interested in questions of density (or approximation with 

arbitrary accuracy) of the multilayer feedforward neural network 

(MLFN) model. Approximation capabilities of this model have been 

well studied for the past 30 years. Choosing various activation 

functions σ it was shown in a great number of papers that MLFNs 

can approximate any continuous function with an arbitrary preci- 

sion. The most simple MLFN model is the single hidden layer feed- 

forward neural network (SLFN) model. This model evaluates a mul- 
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tivariate function 

k ∑ 

i =1 

c i σ (w 

i · x − θi ) (1.1) 

of the variable x = (x 1 , . . . , x d ) , d ≥ 1. Here the weights w 

i are vec- 

tors in R 

d , the thresholds θ i and the coefficients c i are real num- 

bers, and the activation function σ is a univariate function. A mul- 

tiple hidden layer network is defined by iterations of the SLFN 

model. For example, the output of the two hidden layer feedfor- 

ward neural network (TLFN) model with k units in the first layer, 

m units in the second layer and the input x = (x 1 , . . . , x d ) is 

m ∑ 

i =1 

e i σ

( 

k ∑ 

j=1 

c i j σ (w 

i j · x − θi j ) − ζi 

) 

. 

Here d i , c ij , θ ij and γ i are real numbers, w 

ij are vectors of R 

d , and 

σ is a fixed univariate function. 

In many applications, it is convenient to take an activation func- 

tion σ as a sigmoidal function , which is defined as 

lim 

t→−∞ 

σ (t) = 0 and lim 

t→ + ∞ 

σ (t) = 1 . 

https://doi.org/10.1016/j.neucom.2018.07.075 

0925-2312/© 2018 Elsevier B.V. All rights reserved. 

Please cite this article as: N.J. Guliyev, V.E. Ismailov, Approximation capability of two hidden layer feedforward neural networks with 

fixed weights, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.07.075 

https://doi.org/10.1016/j.neucom.2018.07.075
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:vugaris@mail.ru
https://doi.org/10.1016/j.neucom.2018.07.075
https://doi.org/10.1016/j.neucom.2018.07.075


2 N.J. Guliyev, V.E. Ismailov / Neurocomputing 0 0 0 (2018) 1–8 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; August 23, 2018;22:55 ] 

The literature on neural networks abounds with the use of such 

functions and their superpositions (see, e.g., [1,3,5,7–11,13,15–

17,20,27,28,33,40,42] ). 

The possibility of approximating a continuous function on a 

compact subset of R 

d , d ≥ 1, by SLFNs with a sigmoidal activation 

function has been tremendously studied in many papers. To the 

best of our knowledge, Gallant and White [16] were the first to 

prove the universal approximation property for the SLFN model 

with a sigmoidal activation function. Their activation function, 

called the cosine squasher , has the ability to generate any trigono- 

metric series. As such, this function has the density property. Car- 

roll and Dickinson [4] implemented the inverse Radon transforma- 

tion to approximate L 2 functions, using any continuous sigmoidal 

function as an activation function. Cybenko [13] proved that SLFNs 

with a continuous sigmoidal activation function can approximate 

any continuous function with arbitrary accuracy on compact sub- 

sets of R 

d . Funahashi [15] , independently of Cybenko, proved the 

density property for a continuous monotone sigmoidal function. 

Hornik, Stinchcombe and White [22] proved density of SLFNs with 

a discontinuous bounded sigmoidal function. K ̊urková [33] showed 

that staircase-like functions of any sigmoidal type has the ca- 

pability of approximating continuous univariate functions on any 

compact subset of R within arbitrarily small tolerance. This re- 

sult was substantially used in K ̊urková’s further results, which 

showed that a continuous multivariate function can be approxi- 

mated arbitrarily well by TLFNs with a sigmoidal activation func- 

tion (see [32,33] ). Chen et al. [6] generalized the result of Cybenko 

by proving that any continuous function on a compact subset of 

R 

d can be approximated by SLFNs with a bounded (not neces- 

sarily continuous) sigmoidal activation function. Almost the same 

result was independently obtained by Jones [30] . Costarelli and 

Spigler [9] constructed special sums of the form (1.1) , using a given 

function f ∈ C [ a, b ]. They then proved that these sums approximate 

f within any degree of accuracy. In their result, similar to [6] , σ
is any bounded sigmoidal function. Chui and Li [7] proved that 

SLFNs with a continuous sigmoidal activation function having inte- 

ger weights and thresholds can approximate continuous univariate 

functions on any compact subset of the real line. 

In a number of subsequent papers, which considered the den- 

sity problem for the SLFN model, nonsigmoidal activation functions 

were allowed. Here we cite a few of them. The papers by Stinch- 

combe and White [46] , Cotter [12] , Hornik [21] , Mhaskar and Mic- 

chelli [42] are among many others. It should be remarked that the 

more general result in this direction belongs to Leshno et al. [34] . 

They proved that the necessary and sufficient condition for any 

continuous activation function to have the density property is that 

it not be a polynomial. For more detailed discussion of the density 

problem, see the review paper by Pinkus [43] . 

The above results show that SLFNs with various activation func- 

tions enjoy the universal approximation property. In recent years, 

the theory of neural networks has been developed further in this 

direction. For example, from the point of view of practical ap- 

plications, SLFNs with a restricted set of weights have gained 

a special interest (see, e.g., [14,23,25,26,29,35] ). It was proved 

that SLFNs with some restricted set of weights still possess the 

universal approximation property. For example, Stinchcombe and 

White [46] showed that SLFNs with a polygonal, polynomial spline 

or analytic activation function and a bounded set of weights have 

the universal approximation property. Ito [27,28] investigated this 

property of networks using monotone sigmoidal functions, with 

only weights located on the unit sphere. In [23,25,26] , the second 

coauthor considered SLFNs with weights varying on a restricted set 

of directions, and gave several necessary and sufficient conditions 

for good approximation by such networks. For a set of weights 

consisting of two directions, he showed that there is a geometri- 

cally explicit solution to the problem. Hahm and Hong [20] went 

further in this direction, and showed that SLFNs with fixed weights 

can approximate arbitrarily well any continuous univariate func- 

tion. Since fixed weights reduce the computational expense and 

training time, this result is of particular interest. In a mathemat- 

ical formulation, the result says that for a bounded measurable 

sigmoidal function σ , networks of the form 

∑ k 
i =1 c i σ (αx − θi ) are 

dense in C [ a, b ]. Cao and Xie [3] strengthened this result by speci- 

fying the number of hidden neurons to realize ε-approximation to 

any continuous function. By implementing modulus of continuity, 

they established Jackson-type upper bound estimations for the ap- 

proximation error. 

Approximation capabilities of SLFNs with fixed weights were 

also analyzed in Lin et al. [37] . Taking the activation function σ
as a continuous, even and 2 π-periodic function, the authors of 

[37] showed that neural networks of the form 

∑ r 
i =1 c i σ (x − x i ) can 

approximate any continuous function on [ −π, π ] with an arbitrary 

precision ε. Note that all the weights are fixed equal to 1, and 

consequently do not depend on ε. To prove this, they first gave 

an integral representation for trigonometric polynomials, and con- 

structed explicitly a network with the weight 1 that approximates 

this integral representation. Finally, the obtained result for trigono- 

metric polynomials was used to prove a Jackson-type upper bound 

for the approximation error. 

Note that SLFNs with a fixed number of weights cannot approx- 

imate d -variable functions if d > 1. That is, if in (1.1) we have n 

different weights w 

i ( n is fixed), then there exist a compact set 

Q ⊂ R 

d and a function f ∈ C ( Q ), which cannot be approximated ar- 

bitrarily well by the networks formed as (1.1) . This follows from a 

result of Lin and Pinkus on sums of n ridge functions (see [38, The- 

orem 5.1] ). For details, see our recent paper [19] . Thus the above 

results of Hahm and Hong [20] , Cao and Xie [3] , Lin et al. [37] can- 

not be generalized to the d -dimensional case if one allows only the 

SLFN model of neural networks. 

It should be remarked that in all of the above-mentioned works 

the number of neurons k in the hidden layer is not fixed. As such 

to achieve a desired precision one may take an excessive number 

of hidden neurons. Unfortunately, practicality decreases with the 

increase of the number of neurons in the hidden layer. In other 

words, SLFNs are not always effective if the number of neurons 

in the hidden layer is prescribed. More precisely, they are effec- 

tive if and only if we consider univariate functions. In [18] , we 

consider constructive approximation on any finite interval of R by 

SLFNs with a fixed number of hidden neurons. We construct algo- 

rithmically a smooth, sigmoidal, almost monotone activation func- 

tion σ providing approximation to an arbitrary univariate contin- 

uous function within any degree of accuracy. Note that the result 

of [18] is not applicable to multivariate functions. 

The first crucial step in investigating approximation capabili- 

ties of MLFNs with a prescribed number of hidden neurons was 

made by Maiorov and Pinkus [41] . Their remarkable result revealed 

that TLFNs with 3 d units in the first layer and 6 d + 3 units in the 

second layer can approximate an arbitrary continuous d -variable 

function. Using a different activation function than in [41] , the sec- 

ond coauthor [24] showed that the number of neurons in hidden 

layers can be reduced to d and 2 d + 2 respectively. Note that the 

results of both papers carry a theoretical character, as they indi- 

cate only the existence of the corresponding TLFNs, their activation 

functions. 

We see that in each result above at least one of the following 

general properties is violated. 

1. The number of hidden neurons is fixed. 

2. The weights are fixed. 

3. The activation function is computable. 

4. The network has the capability of approximating d -variable 

functions in the case d > 1. 
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