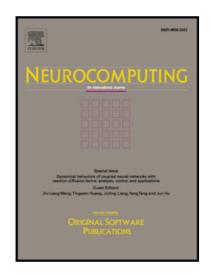
Accepted Manuscript

Fast, Robust and Accurate Posture Detection Algorithm Based on Kalman filter and SSD for AGV

Weiyang Lin, Xinyang Ren, Jianjun Hu, Yuzhe He, Zhan Li, Mingsi Tong


PII: S0925-2312(18)30921-4

DOI: https://doi.org/10.1016/j.neucom.2018.08.006

Reference: NEUCOM 19835

To appear in: Neurocomputing

Received date: 19 May 2018
Revised date: 4 August 2018
Accepted date: 5 August 2018

Please cite this article as: Weiyang Lin, Xinyang Ren, Jianjun Hu, Yuzhe He, Zhan Li, Mingsi Tong, Fast, Robust and Accurate Posture Detection Algorithm Based on Kalman filter and SSD for AGV, *Neurocomputing* (2018), doi: https://doi.org/10.1016/j.neucom.2018.08.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fast, Robust and Accurate Posture Detection Algorithm Based on Kalman filter and SSD for AGV

Weiyang Lin^{a,b}, Xinyang Ren^a, Jianjun Hu^a, Yuzhe He^a, Zhan Li^a, Mingsi Tong^{a,b,*}

Abstract

The autonomous navigation technology of mobile robot based on visual sensor has been widely studied by researchers in recent years. Visual sensors, such as Charge-coupled Device (CCD), usually bring severe noise and unpredictable disturbances (including light differences, scene changes, etc.), thus it is necessary to find an adapted detection method to accommodate to the complex missions. Traditional detection model obtains feature characterization manually, which is laborious, time-consuming, mostly depending on researchers experience, and greatly increases the complexity of the recognition procedures. In this paper, we propose a target location strategy Kalman based SSD (K-SSD) utilizing convolution neural network (CNN) to improve the location accuracy and the speed of mobile robot during the automatic navigation. First, one frame of the entire scene is captured by a camera to construct an environment model. Then, a Single Shot MultiBox Detector (SSD) model is trained offline using original images as model input, which can output classes corresponding with their own positions. Finally, we use the Kalman Filter to filter the Gaussian noise to improve the accuracy of location. In the experiments, we use the HUSKY UGV platform to verify the proposed strategy. The results indicate that this algorithm is capable of realizing the fast, robust and accurate posture detection for Gaussian noise and abnormal noise.

Keywords: Deep learning, Kalman Filter, Autonomous navigation, CNN

1. Introduction

Autonomous navigation using visual sensor has been drawing a great deal of attention these years, including academic researches and industrial applications. Reference [1] proposed a navigation method based on Kalman Filter and magnetic nail localization in Automatic Guided Vehicle (AGV). Kanezaki[2] solved the mobile robot navigation problem

Email addresses: wylin@hit.edu.cn (Weiyang Lin), tongms@hit.edu.cn (Mingsi Tong)

^aResearch Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China

^b Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China

^{*}Corresponding author: Mingsi Tong

Download English Version:

https://daneshyari.com/en/article/8965186

Download Persian Version:

https://daneshyari.com/article/8965186

<u>Daneshyari.com</u>