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a b s t r a c t 

In this paper, a new interpretation of parametric linear discriminants for binary classification problems 

is presented. Linear discriminants are described in terms of Disjoint Tangent Configurations (DTC) es- 

tablished between the ellipsoidal level surfaces resulting from the means and covariance matrices of the 

distributions. This is a new framework that allows, first, a new interpretation and analysis of several well- 

known linear discriminants and, second, the design of new discriminants with very interesting properties. 

In particular, it is shown that the analytical expression of the Bayes Linear Discriminant —whose explicit 

expression is still unknown— can be derived from a particular DTC. Besides the Bayes discriminant, other 

classical linear discriminants are also described according to the DTC analysis, in particular, the Fisher and 

the Scatter-based Linear Discriminants. On the other hand, two new linear discriminants for the minimax 

and the Bayesian solutions are obtained from the DTC analysis. Both have a direct analytical expression 

in contrast to the existing iterative solutions, with which they are compared. The first DTC discriminant, 

which is called MPDH-DTC, is the solution of the Minimax Probabilistic Decision Hyperplane (MPDH) 

problem, the same solution that the Minimax Probability Machine (MPM) method approximates by an 

iterative convex optimization. The second discriminant, called Quasi-Bayes-DTC Linear Discriminant, is 

designed to be an approximation to the Bayes Linear Discriminant, which requires a search procedure to 

find the solution. 

Considering both the accuracy over several synthetic and real problems and the computational cost, the 

Quasi-Bayes-DTC is the preferred discriminant due to its high performance and low computational cost, 

unless a minimax solution is required, in that case the MPDH-DTC is preferred. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

A Bayes classifier minimizes the probability of error [1] . Nev- 

ertheless, the Bayes criterion requires the knowledge of the prob- 

ability density functions which must be estimated from the data. 

Although density estimation techniques are available, the estima- 

tions are computationally complex, and large amounts of data are 

needed to provide accurate results. Thus, simpler procedures have 

been developed to solve classification problems, including para- 

metric techniques that specify the mathematical form of the clas- 

sifier, followed by parametric estimation. 

A very common and efficient technique is to choose a linear 

model both to solve classification problems and as a feature extrac- 
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tion tool [2–7] . Although it is well known that linear classifiers are 

suboptimal [1] , many attempts have been made to design the best 

linear discriminant for both normal and non-normal distributions. 

In many cases, a linear discriminant is preferred for simplicity and 

robustness, and ease of interpretation. 

Given a particular classification problem, it is generally con- 

venient to perform a transformation of the data space to over- 

come the performance obtained in the original space. Many differ- 

ent techniques have been proposed in the literature to make effi- 

cient transformations such as the very well-known Principal Com- 

ponents Analysis (PCA) [8] ) –paradigm of dimensionality reduc- 

tion methods–, the Denoising Autoencoders (DAE) [9] ) –nowadays 

one of the most used technique due to its high representation 

capability–, and other very recent proposals as the low-rank sub- 

space Learning [10] and dictionary learning [11,12] , in which data 

are represented as a sparse linear combination of independent vec- 

tors of an over-complete space. However, this is a research field 

beyond the scope of this article. 
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In [1] , a procedure to design parametric linear discriminants for 

binary problems is introduced. This method is optimal with respect 

to a separability criterion defined in a one-dimensional projected 

space, i.e., the linear discriminant defines a direction along which 

the projected data of one class are maximally separated from the 

projected data of the another class. Different linear discriminants 

are obtained when different separability criteria are selected. The 

most important criteria are the Bayes error for normal distribu- 

tions, the Fisher criterion, and other criteria based on scatter ma- 

trices [13–15] . 

In this paper, a new interpretation of these linear discriminants 

is presented. Linear discriminants are described in terms of Dis- 

joint Tangent Configurations (DTC) established between the level 

surfaces of distributions characterized by a mean vector and a co- 

variance matrix. For such distributions, the level surfaces are ellip- 

soids. The analytical relation between these DTC discriminants and 

those obtained by the classical parametric design is established. 

The DTC discriminant analysis is also applied to minimax clas- 

sification problems. The minimax solution is an important issue in 

pattern recognition, for example, when the number of training data 

of each class does not reflect the actual prior probabilities. There- 

fore, minimax is a natural classification criterion in the absence of 

prior information regarding the true frequency of the two classes. 

For this reason, many researchers prefer to use classifiers operat- 

ing at Equal Error Rate (EER), that is, classifiers that minimize the 

maximum of the false alarm and miss rates [16,17] . Moreover, the 

minimax problem can also be addressed when the information of 

the class distributions is unknown or not exact. In particular, the 

authors of [18] and [19] introduce the Minimax Probabilistic De- 

cision Hyperplane (MPDH) as that which separates two classes of 

points with maximal probability with respect to all distributions 

having the same means and covariance matrices. The MPDH prob- 

lem is addressed there through iterative algorithms that impose 

bounds to the classification errors and use convex optimization 

methods, the most common being the Minimax Probability Ma- 

chine (MPM). Here, a non-iterative and simple expression of the 

MPDH solution is obtained as a particular DTC, and its perfor- 

mance over several artificial and real problems is analyzed. 

Finally, a new linear discriminant is also obtained from a partic- 

ular DTC. This linear discriminant presents two remarkable prop- 

erties: It produces an accuracy performance close to that of the 

Bayes Linear Discriminant (for this reason, it is called Quasi–Bayes- 

DTC), and it is obtained from a simple expression with a competi- 

tive computational cost because it is neither an iterative procedure 

nor a search method. 

The paper is organized as follows. Section 2 shows a brief re- 

view of the design of parametric linear discriminants including the 

MPDH. In Section 3 , the linear discriminants presented in the pre- 

vious section are described in terms of the DTC analysis. A separate 

section is reserved to the totally new Quasi-Bayes-DTC linear dis- 

criminant, it is presented in Section 4 . Section 5 presents a com- 

parative study of the performance of all the linear discriminants 

considered in this work. The accuracy results using both synthetic 

and real data are analyzed. Conclusions and ideas for future work 

complete the paper. 

The main contributions of this article are: 

1. The presentation of a new framework in which several well- 

known linear discriminants —such as Bayes, Fisher, those based 

on the dispersion of the classes (Scatter-based) or the Mini- 

max Probability Machine (MPM)— acquire a new common in- 

terpretation: they are discriminants described by disjoint tan- 

gent configurations (DTC). In this sense, these classic discrimi- 

nants present a new way of being understood and analyzed. 

2. This framework allows obtaining new linear discriminants with 

very interesting properties. In particular, two new linear dis- 

criminants are presented: 

(a) the MPDH-DTC discriminant which is a direct solution 

of the minimax MPDH problem, unlike the MPM method 

which is an iterative approach. 

(b) the Quasi-Bayes-DTC discriminant that provides a very close 

accuracy to that of the Bayes Linear Discriminant, but with 

the advantage of needing a lower computational cost. 

2. A brief review of designs of parametric linear discriminants 

One of the most straightforward procedures to design classifiers 

is to assume a specific analytical form of the discriminant which 

contains a number of adjustable parameters. The values of these 

parameters can then be optimized to obtain the best classification. 

The simplest choice is the linear form, whose discriminant 

function can be written as 

h (x ) = w 

T (x − x 0 ) (1) 

where w ∈ R 

n is called the weight vector, n is the dimension of x , 

and x 0 ∈R 

n the bias vector. The decision rule implemented by a 

linear discriminant function is normally expressed as 

h (x ) = w 

T x + ω 0 

C 1 
≷ 

C 2 

0 (2) 

where 

ω 0 = −w 

T x 0 (3) 

This equation indicates that the n -dimensional vector x is pro- 

jected onto the vector w , and it is classified as either class C 1 or 

class C 2 , depending on whether variable z=w 

T x is greater or less 

than −ω 0 . Hence, ω 0 is called the threshold weight. Thus, the task 

of designing a linear classifier consists of finding a weight vec- 

tor w and a threshold value ω 0 (or a bias vector x 0 ) that provide 

the smallest error in the one-dimensional projected space, or h - 

space. Equation h (x ) = 0 describes the decision boundary, which is 

a hyper-plane. This hyper-plane is determined by the weight vec- 

tor w , that defines the orientation, and by the bias vector x 0 , which 

is a point of the hyper-plane that fixes its relative position in the 

data space. Thus, a linear discriminant divides this space into two 

half-spaces by means of a hyper-plane. 

In order to design a linear classifier, it is established a separabil- 

ity criterion whose optimization provides the values of w and ω 0 . 

A function f (μ1 , μ2 , σ
2 
1 , σ

2 
2 ) of the means and variances of h ( x ) 

can be an appropriate criterion to measure the class separability 

because, even when samples x are not normally distributed, h ( x ) 

could be close to normal for large n [1] . These means and vari- 

ances are given by 

μ j = E{ h (x ) | C j } = w 

T E{ x | C j } + ω 0 

= w 

T m j + ω 0 (4) 

σ 2 
j = V ar{ h (x ) | C j } 

= w 

T E{ (x − m j )(x − m j ) 
T | C j } w 

= w 

T � j w (5) 

where m j ∈R 

n and � j ∈R 

n ×n are the mean vector and covariance 

matrix of x ∈ C j , j = 1 , 2 , respectively. It can be shown [1] that the 

optimization of function f produces a linear discriminant given by 

w = [ s �1 + (1 − s )�2 ] 
−1 

(m 2 − m 1 ) (6) 

where 

s = 

∂ f/∂ σ 2 
1 

∂ f/∂ σ 2 
1 

+ ∂ f/∂ σ 2 
2 

(7) 
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