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a b s t r a c t

In this paper, Local Absorbing Boundary Conditions are presented for wave propagation through the vis-
coelastic media. This method is an extension of Local Absorbing Boundary Condition (ABC) proposed by
Lysmer and Kuhlemeyer (1969). The proposed method does not converge for Kelvin type of viscoelastic
materials but converges for Maxwell type of viscoelastic material model. This method is verified with 1D
and 2D finite element models using explicit solver and the accuracy is compared with standard solutions.
This study concluded that better responses can be obtained for the viscoelastic wave propagation using
present approach when compared with traditional Local Absorbing Boundary Conditions. This study also
concluded that the proposed method is suitable for low to medium viscous damping materials. For high
viscous materials, the proposed method can be applied to transient wave propagation problems.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The effects of Structure-Soil-Structure-Interaction (SSSI) are
being studied on the behavior of civil engineering structures for
decades [1]. In order to solve the wave propagation problems using
finite element analysis (FEA), the model has to be terminated at
some finite location. This truncation of the model at the finite
boundary will cause the reflection of radiating elastic waves. The
reflected waves from the boundary will affect the solution and
may lead to instabilities in the numerical analysis. Therefore, it is
necessary to provide an artificial boundary condition that will
transmit the outward propagating waves with minimum or negli-
gible reflections. To address this problem, various kinds of analyt-
ical formulations have been developed, but they have their own
limitations in avoiding reflections.

Absorbing Boundary Conditions (ABC) proposed by Lysmer and
Kuhlemeyer [2] are the first local absorbing boundary conditions
for elastic wave propagation. These boundary conditions are exten-
sively used in commercial software, since they are very easy to
implement, and have negligible computational cost. Engquist and
Majda [3] and Mur [4] proposed higher order local approximate
boundary conditions.

Perfectly Matched Layer (PML) was originally proposed by
Berenger [5] is an artificial absorbing layer and has been widely
used in recent year [6–10]. PML has been successfully imple-
mented in time-domain for explicit dynamic solver by Basu in
2009 [11]. The basic idea of the PML is that the incident wave
energy is absorbed inside the PML layers while matching impe-
dance with non-PML layers. However, PML layers are derived
based on elastic wave propagation. Also, the resulting finite ele-
ment equations are very complex and require much computational
time.

The Caughey Absorbing Layer Method (CALM) was proposed by
Semblat (2010), is a simple and reliable alternative to the Perfectly
Matched Layer (PML) like other absorbing layer methods [12–15],
the CALM consists of defining an absorbing layer at the boundaries
of the elastic medium under consideration. This absorbing layer is
modelled with the same elastic properties as the interior medium,
but the damping is added to attenuate all waves that leave the
interior domain. This method also requires many absorbing layers
to absorb the outward propagating waves and hence requires
much computational time [15].

Apart from ABC and Absorbing Layers (PML, CALM and etc.,),
techniques have been proposed to map the semi-infinite domain
onto a finite domain using Infinite element [16–18]. The accuracy
of the infinite elements depends upon the choice of the shape func-
tions and the order of approximation. The dynamic Infinite ele-
ments [18] includes the effect of wave propagation into the
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unbounded domain by using frequency dependent mass and stiff-
ness matrices. This method requires complex transformations of
mass and stiffness matrices from the frequency domain to time
domain.

It is well-known fact, almost all physical domains like soils
exhibit some viscosity when the waves travel through these
domains. It is also known that direct time integration is
widely used in finite element solutions of structural dynamics
and transient wave propagation problems. Viscous effects
are usually considered in the form of Rayleigh damping for
direct integral methods. As stiffness proportional damping is
usually neglected for its significant influence on limit time
increment, it is general practice to use mass proportional
damping [19].

Local Absorbing Boundary Conditions are derived based on elas-
tic wave propagation and produce reflections when used with
viscoelastic material even when the wave impinges at a normal
direction to the boundary. Nonlocal Absorbing Boundary condi-
tions such as Caughey Absorbing Layer Method CALM, Artificial
Layers by Increase in Damping (ALID) can be applied to viscoelastic
wave propagation. However, these methods required many
additional layers beyond the Area of Study (AoS) region to absorb
the outward propagating waves efficiently Though, these
methods effectively absorb the wave energy, if the successive lay-
ers are properly modelled, the number of degrees of freedom
increases tremendously for three-dimensional wave propagation
problems [15].

In this study, an attempt has been made to develop the local
Absorbing Boundary Conditions for viscoelastic wave propagation
by including viscosity in the form of mass proportional Rayleigh
damping. The efficiency of the Viscoelastic Absorbing Boundary
Conditions (VABC) has been verified by comparing the results with
analytical models. The results show the better absorption of
incoming waves from the viscoelastic domain and thus they can
be used in SSSI problems which ensures more accuracy in the
analysis.

2. Formulation of the method

The Absorbing Boundary Conditions correspond to a situation
where the boundary is supported on infinitesimal dash-pots ori-
ented normal and tangential to the boundary. The corresponding
stress components are given by

r ¼ a q Vp _u ð1Þ

s ¼ b q Vs _v ð2Þ
where r and s are the normal and shear stresses, _u and _v are the
normal and tangential velocities respectively; q is the mass density;
Vs and Vp are the velocities of S-waves and P-waves respectively; a
and b are dimensionless parameters.

The equation of motion of the system under dynamic equilib-
rium is defined as

½M�€uþ ½C� _uþ ½K�u ¼ F ð3Þ

where ½M�, ½C�, and ½K� are the global mass, damping and stiffness
matrices respectively. €u, _u, u and F are the acceleration, velocity, dis-
placement and external force vectors respectively. Damping matrix
can be defined using Rayleigh damping coefficients as

½C� ¼ a½M� þ b½K� ð4Þ
where a and b are mass and stiffness proportional damping coeffi-
cients. The equation of motion defined in Eq. (3) has the harmonic
solution. The displacements, velocities, and accelerations can be
expressed as

uðx;tÞ ¼ ueiðkx�xtÞ

_uðx;tÞ ¼ �ix ueiðkx�xtÞ

€uðx;tÞ ¼ �x2 ueiðkx�xtÞ
ð5Þ

whereu is amplitude,x is angular frequency and k is wave number
i.e. k ¼ x=Vp. From Eqs. (3)–(5), the equation of motion can be writ-
ten as

½ �M�€uþ ½�K�u ¼ F ð6Þ

where ½ �M� ¼ ½M�ð1� a
ixÞ and ½�K� ¼ ½K�ð1� ixbÞ are complex mass

and stiffness matrices respectively.
Since the mass and stiffness are proportional to the density and

Young’s modulus respectively. The complex mass and complex
Young’s modulus can be calculated as

�q ¼ q 1� a
ix

� �
�E ¼ Eð1� ixbÞ

ð7Þ

Replacing Young’s modulus and density in Eq. (1) with complex
Young’s modulus and complex density respectively

r ¼ a q Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

ix

� �
ð1� ixbÞ

r
_u ð8Þ

Expanding square root terms using Taylor series and ignoring
higher order terms in the above equation

r ¼ a q Vp 1� a
2ix

� ixb
2

þ ab
2

� �
_u ð9Þ

Back substituting Eq. (5) into the Eq. (9) yields

r ¼ a q Vp½0:5b €uþ ð1þ 0:5abÞ _uþ 0:5au� ð10Þ
Similarly, Eq. (2) can be modified by replacing the Young’s mod-

ulus and density with the complex Young’s modulus and complex
density and by following the steps from Eqs. (8)–(10).

s ¼ b q Vs½0:5b€v þ ð1þ 0:5abÞ _v þ 0:5av� ð11Þ

Eqs. (10) and (11) are the improved absorbing boundary conditions,
which include the effect of the Rayleigh damping in the equation of
motion. From Eqs. (8) and (9) it can be observed that stiffness pro-
portional damping terms are not converging at higher frequencies,
these equations are mainly limited to mass proportional damping
cases.

If mass proportional only damping is applied, then Eqs. (10) and
(11) can be rewritten as

r ¼ a q Vp _uþ 0:5a q Vpau ð12Þ

s ¼ b q Vs _v þ 0:5b q Vsav ð13Þ
Absorbing forces in normal and tangential directions at the

VABC can be calculated using Fn ¼ rA and Ft ¼ sA, where A is the
associated area corresponding to respective dashpots. It can be
observed from Eqs. (12) and (13) that the absorbing forces at the
boundary include a dashpot with coefficient aqVpA and a spring
with coefficient 0:5aqVp aA.

The damping and spring coefficients are calculated only once at
the begging of the solver and need not be updated during the anal-
ysis. Also, most of the existing Finite Element software packages
allow defining dampers and springs. Therefore, these boundary
conditions can be easily modelled without any additional imple-
mentation and the additional computation cost is negligible.
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