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a b s t r a c t

The dynamic stiffness method is an exact method for structural dynamic analysis. By separating the vari-
able of the displacement function in frequency domain, the dynamic stiffness matrix and frequency equa-
tion of the structure are obtained, and the structural dynamic analysis can then be achieved by solving
the transcendental frequency equation. For undamped systems, the frequency equation can be accurately
solved by the Wittrick-Williams algorithm, however, the frequency equation of damped structures is a
complex transcendental equation and many root-search techniques performing well in real field includ-
ing the Wittrick-Williams algorithm are no longer applicable. Therefore, the application of dynamic stiff-
ness in damped structures is a major challenge and has not been well resolved. In view of this, aiming at
the classically damped system in the project, this paper has improved the dynamic stiffness method from
two aspects, (1) The calculation principle. By performing the variable separation in Laplace domain
instead of frequency domain, this paper established the relationship between damped frequency and
undamped frequency by a proposed method for the calculation of the damping ratio, thus avoiding the
solution of the hard-to-solve complex transcendental frequency equation; (2) The solution method. To
make the method widely applicable, an improved Wittrick-Williams algorithm is given in this paper to
solve the frequency equation of complicated systems. Finally, numerical examples are used to verify
the accuracy and universality of the proposed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic stiffness method (DSM) relating the amplitudes of
applied forces and responses of a harmonically vibrating contin-
uum has been widely studied and applied in recent decades [1].
The success of the method is due to the fact that the structure only
needs to be specifically divided at geometric or material disconti-
nuities, thus a few elements can be applied to calculate any order
modes without discretizing the structure. This property of DSM
makes it suitable for arbitrary boundary conditions and frequency
ranges, especially effective in solving high-precision and high-
order modes for continuous structures of beams and plates [2].
Arches [3], frames [4], and prismatic plate structures [5] have
already be studied in the past several decades. In recent years,
the method has been applied to composite beam [6–8] and plate
structures [9,10].

However, the method has been applied almost exclusively to
undamped structures whose oscillations are harmonic, or periodic

[11]. This is due mainly to two factors, one is the rather misleading
intuition that only harmonic vibrations can be described by solu-
tions with separate time- and space-dependent factors; the other
is the inherent problems of dynamic stiffness method, namely
the difficulties in solving the transcendental frequency equation.
To overcome these difficulties, the Wittrick–Williams (W-W) algo-
rithm was put forward in 1970 and has been widely used in many
one-dimensional structures, such as bars, frames, and beams,
which can not only obtain the roots of the frequency equation with
the required precision, but also perfectly solve the root-missing
problem [12]. However, for damped or complicated systems, the
original DSM and W-W theories will no longer work [13]. In view
of this, the main work of this paper centres on how to make the
DSM and W-W algorithm still applicable to complicated damped
systems, and an extended dynamic stiffness method (EDSM) which
is capable for a much wider class of problem of classically damped
structures is proposed in this paper. The main improvements of
this method can be illustrated in two aspects.

(1) The first improvement is starting from the basic principles of
the DSM, and the complex frequency parameters are used
instead of the frequency parameters in original DSM when
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preforming the variable separation. The convenience of such
processing is able to avoid the appearance of complex ele-
ments in the dynamic stiffness matrix, and it can also estab-
lish the relation between the damped frequency and
undamped frequency by calculating the damping ratio of
the system with some techniques, thus avoiding the solution
of the hard-to-solve complex transcendental frequency
equation;

(2) The second improvement is to make the W-W algorithm
applicable to complicated structures. Under the premise of
avoiding solving the complex transcendental equations, the
W-W algorithm can continue to exert its powerful computa-
tional advantages. However, the original W-W algorithm can
only be used to some simple structures or at specific bound-
ary conditions. Based on this, this paper proposed an
improved Wittrick-Williams algorithm, which can be used
to calculate the modal frequency of complex structures with
arbitrary boundary conditions.

To illustrate the universality of the method, both viscous damp-
ing and hysteretic damping system are analyzed in the principle
section. The accuracy of the proposed EDSM are verified by numer-
ical examples.

2. Fundamental principle

2.1. Calculation process of original dynamic stiffness method

DSM is usually applied to the dynamic analysis of undamped
systems, during the solution process, it is firstly need to introduce
the harmonic vibration assumption, that is, to transform the dis-
placement functions of the system from the time domain to fre-
quency domain; Then the general solution of the governing
differential equation (GDE) in frequency domain and the time-
independent displacement amplitude are obtained by variables
separation; Finally, combined with the nodal force and displace-
ment boundary conditions, the dynamic matrix of the system is
obtained by eliminating the undetermined coefficients in the gen-
eral solution. In general, the free vibration of an undamped struc-
ture can be described by the following differential equations [14]:

LðuÞ ¼ 0 ð1Þ
where L is the differential operator and u is the corresponding dis-
placement vector. By introducing the simple harmonic motion
assumptions, the displacement u can be expressed as:

u ¼ Ueixt ð2Þ
where U is the displacement amplitude vector, x is the circular fre-
quency (rad/s), t is the time, i ¼

ffiffiffiffiffiffiffi
�1

p
.

By substituting Eq. (2) into Eq. (1), the time-related terms will
be eliminated and yields

L1ðU;xÞ ¼ 0 ð3Þ
where L1 is the differential operator. The solution of Eq. (3) can be
determined by

U ¼ AC ð4Þ
where C is the coefficient vector, A is a square matrix related to the
frequency.

Then, by substituting Eq. (4) into the displacement boundary
condition, the nodal displacement vector d can be expressed as

d ¼ BC ð5Þ
where matrix B is a square matrix obtained from A after substitut-
ing Eq. (4) into the displacement boundary conditions.

Then, the relationship between the nodal force and the vector C
can also be obtained by introducing the force boundary condition

F ¼ DC ð6Þ
where F is the nodal force vector, D is the square matrix related to
the frequency. After eliminating the constant vector C from Eqs. (5)
and (6), we have

F ¼ DB�1d ¼ Kd ð7Þ
where K ¼ DB�1 is the dynamic stiffness matrix. For free vibration,
the dynamic equilibrium equation Eq. (7) becomes

Kd ¼ 0 ð8Þ
Eq. (8) is a homogeneous equation, usually, to obtain a nontrivial
solution yield

jKðxÞj ¼ 0 ð9Þ
where j � j represents the value of the determinant. The frequency
satisfying the characteristic equation Eq. (9) (that is, the frequency
value at the zero point of jKðxÞj) is the natural frequency of the
structure.

2.2. Principles of extended dynamic stiffness method

When the DSM is employed to analyze a damped system, the
existence of the damping term in the GDE will lead to a complex
dynamic stiffness matrix, and then the frequency equation will
become a complex transcendental equation, making it difficult to
solve. The calculation process of the EDSM is basically the same
as that of DSM, except that the displacement vector and load vector
of the structure need to be converted from the time domain to the
Laplace domain rather than frequency domain when performs the
variables separation. Then the GDE and the frequency equation
jKðkÞj ¼ 0 of the system in the Laplace domain can be obtained,
where k ¼ aþ ib, i ¼

ffiffiffiffiffiffiffi
�1

p
. This method can not only effectively

avoid the generation of complex elements in dynamic stiffness
matrix, but also does not increase the difficulty in solving the fre-
quency equation. In addition, the hysteretic damping and viscous
damping can be easily considered by EDSM when analyzing the
damped system. In particular, for a damped system there is a ¼ 0
and k ¼ ix.

To introduce the calculation steps of EDSM in different damped
systems, the Euler beam is taken as an example to illustrate the
application in viscous and hysteretic damped system.

2.2.1. Undamped system
Considering the undamped free vibration of a uniform Euler

beam, whose GDE is [1]

EI
@4u
@x4

þm
@2u
@t2

¼ 0 ð10Þ

where EI and m are the flexure stiffness and mass per unit length of
the beam separately, uðx; tÞ is the transverse displacement function.
Assuming that the solution has the form of uðx; tÞ ¼ UðxÞek0t , then
Eq. (10) yields

EI
@4U
@x4

þ k2mU ¼ 0 ð11Þ

Let a0 ¼ 1 and b0 ¼ k20, the equation above can be rewritten as a
general form as

a0EI
@4U
@x4

þ b0mU ¼ 0 ð12Þ

Suppose the general form of the above equation is U ¼ Aejx,
then the characteristic function of Eq. (12) can be expressed as
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