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Abstract

We prove that several forms of the Bernstein polynomials with integer coefficients possess the property
of simultaneous approximation, that is, they approximate not only the function but also its derivatives.
We establish direct estimates of the error of that approximation in uniform norm by means of moduli of
smoothness. Moreover, we show that the sufficient conditions under which those estimates hold are also
necessary.
c⃝ 2018 Elsevier Inc. All rights reserved.
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1. Main results

The Bernstein operator or polynomial is defined for f ∈ C[0, 1] and x ∈ [0, 1] by

Bn f (x) :=

n∑
k=0

f
(

k
n

)
pn,k(x), pn,k(x) :=

(
n
k

)
xk(1 − x)n−k .
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Here n ∈ N, where N is the set of the positive integers. It is known that if f ∈ C[0, 1], then

lim
n→∞

∥Bn f − f ∥ = 0,

where ∥ ◦ ∥ is the sup-norm on the interval [0, 1]. A best possible estimate of that convergence
can be given by the Ditzian–Totik modulus of smoothness ω2

ϕ( f, t) of the second order with a
varying step, controlled by the weight ϕ(x) :=

√
x(1 − x), in the uniform norm on the interval

[0, 1]. It is defined by (see [4, Chapter 2, (2.1.2)])

ω2
ϕ( f, t) := sup

0<h≤t
∥∆̄2

hϕ f ∥,

where

∆̄2
hϕ(x) f (x) :=

{
f (x + hϕ(x)) − 2 f (x) + f (x − hϕ(x)), x ± hϕ(x) ∈ [0, 1],
0, otherwise.

For all f ∈ C[0, 1] and n ∈ N there holds (see [3, Chapter 10, (7.3)], or [2, Theorem 6.1])

∥Bn f − f ∥ ≤ c ω2
ϕ( f, n−1/2). (1.1)

Above and henceforward c denotes a positive constant, not necessarily the same at each
occurrence, whose value is independent of f and n.

The estimate (1.1) is best possible in the sense that its converse also holds true (see [12]
and [20], or [3, Chapter 10, (7.3)], or [2, Theorem 6.1])

ω2
ϕ( f, n−1/2) ≤ c ∥Bn f − f ∥.

The varying-step moduli are quite useful when the approximation is better near the endpoints of
the interval. Such is the case of the Bernstein polynomials, which interpolate the function at 0 and
1. More importantly, these moduli (unlike the classical ones) allow better inverse theorems for
the best algebraic approximation since they take into account the effect of the endpoints (see [4,
Chapter 7] and [3, Chapter 8]). Instead of ω2

ϕ( f, t) we can use the moduli defined in [9,10,7,13–
15,19], or [6].

Kantorovich [11] (or e.g. [1, pp. 3–4], or [16, Chapter 2, Theorem 4.1]) introduced an integer
modification of Bn . It is given by

B̃n( f )(x) :=

n∑
k=0

[
f
(

k
n

) (
n
k

)]
xk(1 − x)n−k .

Above [α] denotes the largest integer that is less than or equal to the real α. L. Kantorovich
showed that if f ∈ C[0, 1] is such that f (0), f (1) ∈ Z, then

lim
n→∞

∥B̃n( f ) − f ∥ = 0.

Clearly, the conditions f (0), f (1) ∈ Z are also necessary in order to have limn→∞ B̃n( f )(0) =

f (0) and limn→∞ B̃n( f )(1) = f (1), respectively.
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