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Abstract

We present deterministic algorithms for the uniform recovery of d-variate rank one tensors from function
values. These tensors are given as product of d univariate functions whose r th weak derivative is bounded
by M . The recovery problem is known to suffer from the curse of dimensionality for M ≥ 2r r !. For smaller
M , a randomized algorithm is known which breaks the curse. We construct a deterministic algorithm which
is even less costly. In fact, we completely characterize the tractability of this problem by distinguishing
three different ranges of the parameter M .
c⃝ 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose we know that a d-variate function f is the product of d univariate functions with
a certain smoothness. How many function values do we need to capture f up to some error
ε ∈ (0, 1) in the uniform norm? This question has been posed and investigated in the work of
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Bachmayr, Dahmen, DeVore and Grasedyck [2]. The hope is that the structural knowledge about
f allows for efficient deterministic approximation schemes in high-dimensional settings. More
precisely, it is assumed that f is contained in the class of rank one tensors given by

Fd
r,M =

{ d⨂
i=1

fi | fi : [0, 1] → [−1, 1], ∥ f (r )
i ∥∞ ≤ M

}
for smoothness parameters r ∈ N and M > 0. Here, f (r )

i denotes the r th weak derivative of fi .
In particular, it is assumed that fi is contained in the class W r

∞
([0, 1]) of univariate functions

which have r weak derivatives in L∞([0, 1]).
It is proven in [7] that for M ≥ 2rr ! this problem suffers from the curse of dimensionality: To

ensure an error smaller than ε, any deterministic algorithm must use exponentially many function
values with respect to the dimension. Even for randomized methods, the curse is present. For
M < 2rr ! however, a randomized algorithm is constructed which does not require exponentially
many function values. We are driven by the question whether the same is possible with a
deterministic algorithm. We give an affirmative answer to this question. In fact, we explicitly
construct and analyze deterministic algorithms for different ranges of the smoothness parameters.
We use the following terminology.

The worst case error of an algorithm A on the class Fd
r,M is given by

e(A) := sup
f ∈Fd

r,M

∥ f − A( f )∥∞.

The number of function values used by A for the input f is denoted by cost(A, f ). The worst
case cost of A is given by

cost(A) := sup
f ∈Fd

r,M

cost(A, f ).

A deterministic algorithm is already constructed in [2]. It achieves the worst case error ε while
using at most

Cr,d Md/rε−1/r

function values of f , see [2, Theorem 5.1]. This number behaves optimally as a function of ε.
However, the constant Cr,d and hence the number of function values grows super-exponentially
with d for any M > 0 and r ∈ N. For the algorithm, the following observation of Bachmayr,
Dahmen, DeVore and Grasedyck is crucial. If we know some z∗

∈ [0, 1]d with f (z∗) ̸= 0, we
can construct a method Im(z∗, ·) that uses m function values and satisfiesIm(z∗, f ) − f


∞

≤ ε, (1)

if we choose

m =
⌊

Cr,M d1+1/rε−1/r⌋ . (2)

Here, Cr,M is a positive constant which only depends on r and M . For example, one can choose
Cr,M = 4 max{1, C1(r )M}

1/r with C1(r ) as in [2, Section 2]. Roughly speaking, the knowledge
of a non-zero of f allows us to reduce the problem to d univariate approximation problems
which can, for example, be treated by the use of polynomial interpolation. With this observation
at hand, the authors of [2] use an approximation scheme of the following type:
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