Number theory

# $A B C$ and the Hasse principle for quadratic twists of hyperelliptic curves 

# ABC et le principe de Hasse pour les tordues de courbes hyperelliptiques 

Pete L. Clark, Lori D. Watson<br>Department of Mathematics, University of Georgia, Athens, GA 30606, United States

## ARTICLE INFO

## Article history:

Received 8 May 2018
Accepted after revision 13 July 2018
Available online 3 August 2018
Presented by the Editorial Board


#### Abstract

Conditionally on the ABC conjecture, we apply work of Granville to show that a hyperelliptic curve $C_{/ \mathbb{Q}}$ of genus at least three has infinitely many quadratic twists that violate the Hasse Principle iff it has no $\mathbb{Q}$-rational hyperelliptic branch points.


© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

## RÉS U M É

En supposant la conjecture ABC, nous utilisons un travail de Granville pour montrer qu'une courbe hyperelliptique $C_{\mathbb{Q}}$ de genre au moins trois a une infinité de tordues quadratiques, qui violent le principe de Hasse si et seulement si elle n'a pas de point de branchement hyperelliptique rationnel sur $\mathbb{Q}$.
© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

## 1. Introduction

Let $C_{/ \mathbb{Q}}$ be an algebraic curve. (All our curves will be nice: smooth, projective and geometrically integral.) An involution $\iota$ on $C$ is an order 2 automorphism of $C_{/ \mathbb{Q}}$. For any quadratic field $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$, there is a curve $\mathcal{T}_{d}(C, \iota)_{/ \mathbb{Q}}$, the quadratic twist of $C$ by $\iota$ and $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$. After extension to $\mathbb{Q}(\sqrt{d})$, the curve $\mathcal{T}_{d}(C, \iota)$ is canonically isomorphic to $C_{/ \mathbb{Q}(\sqrt{d})}$, but the $\operatorname{Aut}(\mathbb{Q}(\sqrt{d}) / \mathbb{Q})=\left\langle\sigma_{d}\right\rangle$ action on $C(\mathbb{Q}(\sqrt{d}))$ is "twisted by $\iota$ ", meaning that $\sigma_{d}: P \in C(\mathbb{Q}(\sqrt{d})) \mapsto \iota\left(\sigma_{d}(P)\right)$. Thus, we have:

$$
\mathcal{T}_{d}(C, \iota)(\mathbb{Q})=\left\{P \in C(\mathbb{Q}(\sqrt{d})) \mid \iota(P)=\sigma_{d}(P)\right\}
$$

If $d \in \mathbb{Q}^{\times 2}$, we put $\mathcal{T}_{d}(C, \iota)=C$, the "trivial quadratic twist."
Let $q: C \rightarrow C / \iota$ be the quotient map. Every $\mathbb{Q}$-rational point on $\mathcal{T}_{d}(C, \iota)$ maps via $q$ to a $\mathbb{Q}$-rational point on $C / \iota$. Let $\bar{P} \in(C / \iota)(\mathbb{Q})$. If $\bar{P}$ a branch point of $\iota$, the unique point $P \in C(\mathbb{Q})$ such that $q(P)=\bar{P}$ is also rational on every quadratic twist. If $\bar{P}$ is not a branch point of $\iota$, there is a unique $d \in \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}$ such that the fiber of $q: \mathcal{T}_{d}(C, \iota) \rightarrow C / \iota$ consists of two $\mathbb{Q}$-rational points.

[^0]https://doi.org/10.1016/j.crma.2018.07.007
1631-073X/© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Work of Clark and Clark-Stankewicz [2], [3], [4] gives criteria on $C$ and $\iota$ for there to be infinitely many $d \in \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}$ such that $\mathcal{T}_{d}(C, \iota)_{/ \mathbb{Q}}$ violates the Hasse Principle: letting $\mathbf{A}_{\mathbb{Q}}$ be the adele ring over $\mathbb{Q}$, this means $\mathcal{T}_{d}(C, \iota)\left(\mathbf{A}_{\mathbb{Q}}\right) \neq \varnothing$ but $\mathcal{T}_{d}(C, \iota)(\mathbb{Q})=\varnothing$. Here is one version.

Theorem 1. [4, Thm. 2] Let $C_{/ \mathbb{Q}}$ be a nice curve, and let $\iota$ be an involution on $C$. Suppose:
(T1) the involution ı has no $\mathbb{Q}$-rational branch points;
(T2) the involution ı has at least one geometric branch point: $\{P \in C(\overline{\mathbb{Q}}) \mid \iota(P)=P\} \neq \varnothing$;
(T3) For some $d \in \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}$ we have $\mathcal{T}_{d}(C, \iota)\left(\mathbf{A}_{\mathbb{Q}}\right) \neq \varnothing$;
$(T 4)$ The set $(C / \iota)(\mathbb{Q})$ is finite.
Then, as $X \rightarrow \infty$, the number of squarefree $d$ with $|d| \leq X$ such that $\mathcal{T}_{d}(C, \iota)_{/ \mathbb{Q}}$ violates the Hasse Principle is $\gg C \frac{X}{\log X}$.
An involution $\iota$ on a curve $C_{/ \mathbb{Q}}$ is hyperelliptic if $C / \iota \cong \mathbb{P}^{1}$. A hyperelliptic curve is a pair $(C, \iota)$ with $\iota$ a hyperelliptic involution on $C$. (A curve of genus at least two admits at most one hyperelliptic involution.) A hyperelliptic curve ( $C, \iota$ ) of genus $g$ has an affine model $y^{2}=f(x)$ with $f(x) \in \mathbb{Q}[x]$ squarefree of degree $2 g+2$ and $\iota:(x, y) \mapsto(x,-y)$. The twist $\mathcal{T}_{d}(C, \iota)$ has affine model $d y^{2}=f(x)$. The branch points of $\iota$ are the roots of $f$ in $\overline{\mathbb{Q}} .^{1}$

If $\iota$ is a hyperelliptic involution then $(C / \iota)(\mathbb{Q})=\mathbb{P}^{1}(\mathbb{Q})$ is infinite, so (T4) is not satisfied. In this note, we give a conditional complement to Theorem 1 that applies to hyperelliptic curves.

Theorem 2. Assume the $A B C$ conjecture. For a hyperelliptic curve ( $C, \iota$ ) of genus $g \geq 3$, the following are equivalent:
(i) the hyperelliptic involution ı has no $\mathbb{Q}$-rational branch points;
(ii) as $X \rightarrow \infty$, the number of squarefree integers $d$ with $|d| \leq X$ such that $\mathcal{T}_{d}(C, \iota)_{/ \mathbb{Q}}$ violates the Hasse Principle is $>_{C} \frac{X}{\log X}$;
(iii) some quadratic twist $\mathcal{T}_{d}(C, \iota) / \mathbb{Q}$ violates the Hasse Principle.

Certainly (ii) $\Longrightarrow$ (iii). As for (iii) $\Longrightarrow$ (i): if $\iota$ has a $\mathbb{Q}$-rational branch point, then this point stays rational on every quadratic twist. So the crux is to show (i) $\Longrightarrow$ (ii), which we will do in $\S 2$. The global part and the dependence on ABC both come from work of Granville [5]. In $\S 3$ we give upper and, in a special case, lower bounds on the number of quadratic twists having adelic points. We use these results to show that when hyperelliptic curves of genus $g \geq 3$ are ordered by height, for $100 \%$ of such curves the number of twists up to $X$ violating the Hasse Principle is $o(X)$, but conditionally on $A B C$, there are hyperelliptic curves for which the number of twists up to $X$ violating the Hasse Principle is $\gg X$. Some final remarks are given in $\S 4$.

## 2. Proof of Theorem 2

### 2.1. Local

Theorem 3. Let $(C, \iota)_{\mathbb{Q}}$ be a hyperelliptic curve of genus $g \geq 1$. If $C\left(\mathbf{A}_{\mathbb{Q}}\right) \neq \varnothing$, then the set of primes $p \equiv 1$ (mod 8) for which $\mathcal{T}_{p}(C, \iota)\left(\mathbf{A}_{\mathbb{Q}}\right) \neq \varnothing$ has positive density.

Proof. For any place $\ell \leq \infty$ of $\mathbb{Q}$, if $p \in \mathbb{Q}_{\ell}^{\times 2}$ then $\mathcal{T}_{p}(C, \iota)_{\mathbb{Q}_{\ell}} \cong C_{/ \mathbb{Q}_{\ell}}$ and thus $\mathcal{T}_{p}(C, \iota)\left(\mathbb{Q}_{\ell}\right) \neq \varnothing$. In particular, this holds for $\ell=\infty$. Henceforth $\ell$ denotes a prime number.

Let $M_{1} \in \mathbb{Z}^{+}$be such that $C$ extends to a smooth relative curve over $\mathbb{Z}_{\ell}$ for all $\ell>M_{1}$. Such an $M_{1}$ exists for any nice curve $C_{/ \mathbb{Q}}$ by openness of the smooth locus. Since $C$ is hyperelliptic, we can take $M_{1}$ to be the largest prime dividing its minimal discriminant.

Suppose $\ell>M:=\max \left(M_{1}, 4 g^{2}-1\right), \ell \neq p$ and $p \notin \mathbb{Q}_{\ell}^{\times 2}$. Then the minimal regular model $C_{/ \mathbb{Z}_{\ell}}$ is smooth. We have $\mathcal{T}_{p}(C, \iota)_{/ \mathbb{Q}_{\ell}(\sqrt{p})} \cong C_{/ \mathbb{Q}_{\ell}(\sqrt{p})}$. Since $\mathbb{Q}_{\ell}(\sqrt{p}) / \mathbb{Q}_{\ell}$ is unramified and formation of the minimal regular model commutes with étale base change [6, Prop. 10.1.17], it follows that the minimal regular model $\mathcal{T}_{p}(C, \iota)_{\mathbb{Z}_{\ell}}$ is smooth. By the Riemann hypothesis for curves over a finite field, since $\ell \geq 4 g^{2}$, we have $\mathcal{T}_{p}(C, \iota)\left(\mathbb{F}_{\ell}\right) \neq \varnothing$, and then by Hensel's Lemma we have $\mathcal{T}_{p}(C, \iota)\left(\mathbb{Q}_{\ell}\right) \neq \varnothing$.

Suppose $\ell \leq M$ and $\ell \neq p$. If $\ell=2$, then $p \in \mathbb{Q}_{\ell}^{\times 2}$ because $p \equiv 1(\bmod 8)$. If $\ell$ is odd, we require that $p$ is a quadratic residue modulo $\ell$, so again $p \in \mathbb{Q}_{\ell}^{\times 2}$. Either way, $\mathcal{T}_{p}(C, \iota)\left(\mathbb{Q}_{\ell}\right)=C\left(\mathbb{Q}_{\ell}\right) \neq \varnothing$.

Suppose $\ell=p$. Let $P \in C(\overline{\mathbb{Q}})$ be a hyperelliptic branch point. We assume that $p$ splits completely in $\mathbb{Q}(P)$. Then $P \in$ $C\left(\mathbb{Q}_{p}\right) \cap \mathcal{T}_{p}(C, \iota)\left(\mathbb{Q}_{p}\right)$.

All in all, we have finitely many conditions on $p$, each of the form that $p$ splits completely in a certain number field. Taking the compositum of these finitely many number fields and its Galois closure, say $L$, we see that if $p$ splits completely in $L$ then $\mathcal{T}_{p}(C, \iota)\left(\mathbf{A}_{\mathbb{Q}}\right) \neq \varnothing$. By (e.g.) the Chebotarev density theorem, this set of primes has positive density.

[^1]
# https://daneshyari.com/en/article/8966146 

Download Persian Version:

## https://daneshyari.com/article/8966146

## Daneshyari.com


[^0]:    E-mail addresses: plclark@gmail.com (P.L. Clark), watson@math.uga.edu (L.D. Watson).

[^1]:    ${ }^{1}$ We have chosen a model in which the point at $\infty$ is not a branch point; this is always possible. There is a model in which the point at $\infty$ is a branch point iff there is a $\mathbb{Q}$-rational branch point.

