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Conditionally on the ABC conjecture, we apply work of Granville to show that a 
hyperelliptic curve C/Q of genus at least three has infinitely many quadratic twists that 
violate the Hasse Principle iff it has no Q-rational hyperelliptic branch points.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

En supposant la conjecture ABC, nous utilisons un travail de Granville pour montrer qu’une 
courbe hyperelliptique C/Q de genre au moins trois a une infinité de tordues quadratiques, 
qui violent le principe de Hasse si et seulement si elle n’a pas de point de branchement 
hyperelliptique rationnel sur Q.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let C/Q be an algebraic curve. (All our curves will be nice: smooth, projective and geometrically integral.) An involution 
ι on C is an order 2 automorphism of C/Q . For any quadratic field Q(

√
d)/Q, there is a curve Td(C, ι)/Q , the quadratic 

twist of C by ι and Q(
√

d)/Q. After extension to Q(
√

d), the curve Td(C, ι) is canonically isomorphic to C
/Q(

√
d)

, but the 
Aut(Q(

√
d)/Q) = 〈σd〉 action on C(Q(

√
d)) is “twisted by ι”, meaning that σd : P ∈ C(Q(

√
d)) �→ ι(σd(P )). Thus, we have:

Td(C, ι)(Q) = {P ∈ C(Q(
√

d)) | ι(P ) = σd(P )}.
If d ∈Q×2, we put Td(C, ι) = C , the “trivial quadratic twist.”

Let q : C → C/ι be the quotient map. Every Q-rational point on Td(C, ι) maps via q to a Q-rational point on C/ι. Let 
P ∈ (C/ι)(Q). If P a branch point of ι, the unique point P ∈ C(Q) such that q(P ) = P is also rational on every quadratic 
twist. If P is not a branch point of ι, there is a unique d ∈ Q×/Q×2 such that the fiber of q : Td(C, ι) → C/ι consists of two 
Q-rational points.
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Work of Clark and Clark–Stankewicz [2], [3], [4] gives criteria on C and ι for there to be infinitely many d ∈ Q×/Q×2

such that Td(C, ι)/Q violates the Hasse Principle: letting AQ be the adele ring over Q, this means Td(C, ι)(AQ) �= ∅ but 
Td(C, ι)(Q) = ∅. Here is one version.

Theorem 1. [4, Thm. 2] Let C/Q be a nice curve, and let ι be an involution on C. Suppose:
(T1) the involution ι has no Q-rational branch points;
(T2) the involution ι has at least one geometric branch point: {P ∈ C(Q) | ι(P ) = P } �=∅;
(T3) For some d ∈Q×/Q×2 we have Td(C, ι)(AQ) �= ∅;
(T4) The set (C/ι)(Q) is finite.
Then, as X → ∞, the number of squarefree d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
log X .

An involution ι on a curve C/Q is hyperelliptic if C/ι ∼= P1. A hyperelliptic curve is a pair (C, ι) with ι a hyperelliptic 
involution on C . (A curve of genus at least two admits at most one hyperelliptic involution.) A hyperelliptic curve (C, ι)
of genus g has an affine model y2 = f (x) with f (x) ∈ Q[x] squarefree of degree 2g + 2 and ι : (x, y) �→ (x, −y). The twist 
Td(C, ι) has affine model dy2 = f (x). The branch points of ι are the roots of f in Q.1

If ι is a hyperelliptic involution then (C/ι)(Q) = P1(Q) is infinite, so (T4) is not satisfied. In this note, we give a condi-
tional complement to Theorem 1 that applies to hyperelliptic curves.

Theorem 2. Assume the ABC conjecture. For a hyperelliptic curve (C, ι) of genus g ≥ 3, the following are equivalent:
(i) the hyperelliptic involution ι has no Q-rational branch points;
(ii) as X → ∞, the number of squarefree integers d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
log X ;

(iii) some quadratic twist Td(C, ι)/Q violates the Hasse Principle.

Certainly (ii) =⇒ (iii). As for (iii) =⇒ (i): if ι has a Q-rational branch point, then this point stays rational on every 
quadratic twist. So the crux is to show (i) =⇒ (ii), which we will do in §2. The global part and the dependence on ABC 
both come from work of Granville [5]. In §3 we give upper and, in a special case, lower bounds on the number of quadratic 
twists having adelic points. We use these results to show that when hyperelliptic curves of genus g ≥ 3 are ordered by 
height, for 100% of such curves the number of twists up to X violating the Hasse Principle is o(X), but conditionally on 
ABC, there are hyperelliptic curves for which the number of twists up to X violating the Hasse Principle is � X . Some final 
remarks are given in §4.

2. Proof of Theorem 2

2.1. Local

Theorem 3. Let (C, ι)/Q be a hyperelliptic curve of genus g ≥ 1. If C(AQ) �= ∅, then the set of primes p ≡ 1 (mod 8) for which 
Tp(C, ι)(AQ) �=∅ has positive density.

Proof. For any place � ≤ ∞ of Q, if p ∈Q×2
� then Tp(C, ι)/Q�

∼= C/Q�
and thus Tp(C, ι)(Q�) �= ∅. In particular, this holds for 

� = ∞. Henceforth � denotes a prime number.
Let M1 ∈ Z+ be such that C extends to a smooth relative curve over Z� for all � > M1. Such an M1 exists for any nice 

curve C/Q by openness of the smooth locus. Since C is hyperelliptic, we can take M1 to be the largest prime dividing its 
minimal discriminant.

Suppose � > M := max(M1, 4g2 − 1), � �= p and p /∈ Q×2
� . Then the minimal regular model C/Z�

is smooth. We have 
Tp(C, ι)/Q�(

√
p)

∼= C/Q�(
√

p) . Since Q�(
√

p)/Q� is unramified and formation of the minimal regular model commutes with 
étale base change [6, Prop. 10.1.17], it follows that the minimal regular model Tp(C, ι)/Z�

is smooth. By the Riemann hy-
pothesis for curves over a finite field, since � ≥ 4g2, we have Tp(C, ι)(F�) �= ∅, and then by Hensel’s Lemma we have 
Tp(C, ι)(Q�) �=∅.

Suppose � ≤ M and � �= p. If � = 2, then p ∈ Q×2
� because p ≡ 1 (mod 8). If � is odd, we require that p is a quadratic 

residue modulo �, so again p ∈ Q×2
� . Either way, Tp(C, ι)(Q�) = C(Q�) �= ∅.

Suppose � = p. Let P ∈ C(Q) be a hyperelliptic branch point. We assume that p splits completely in Q(P ). Then P ∈
C(Qp) ∩ Tp(C, ι)(Qp).

All in all, we have finitely many conditions on p, each of the form that p splits completely in a certain number field. 
Taking the compositum of these finitely many number fields and its Galois closure, say L, we see that if p splits completely 
in L then Tp(C, ι)(AQ) �=∅. By (e.g.) the Chebotarev density theorem, this set of primes has positive density. �

1 We have chosen a model in which the point at ∞ is not a branch point; this is always possible. There is a model in which the point at ∞ is a branch 
point iff there is a Q-rational branch point.
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