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RESUME

Nous démontrons dans cette note que plusieurs constructions de théorie de la mesure
préservent la classe des groupoides sofiques. En particulier, nous montrons qu'un sous-
groupoide virtuellement sofique est sofique. Nous répondons aussi a une question de
Conley, Kechris et Tucker-Drob en démontrant que, pour qu'un groupoide apériodique muni
d’'une mesure de probabilité invariante soit sofique, il est nécessaire et suffisant que son
groupe plein soit métriquement sofique.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The notion of soficity for groups was introduced by Gromov [11] in his work on symbolic dynamics. In 2010, Elek and
Lippner [7] introduced soficity for equivalence relations in the same spirit as Gromov’s original definition, i.e. an equiva-
lence relation R, induced by some action of the free group F., is sofic if the Schreier graph of the F.,-space X can be
approximated, in a suitable sense, by Schreier graphs of finite Fy,-spaces.

Alternative definitions by Ozawa [16] and Paunescu [17] describe soficity at the level of the so-called full semigroup of R,
which can be immediately generalized to groupoids. We will describe general elementary techniques to deal with (abstract)
sofic groupoids.
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1.1. Probability measure-preserving groupoids and full semigroups

We will follow the notations of [5]: given a groupoid G, the source and range maps will be, respectively, s(g) = g !g
and r(g) = gg~! for g € G, and the unit space of G will be denoted G©.

A discrete measurable groupoid is a groupoid G endowed with a standard Borel space structure such that the product and
inversion maps are Borel, and such that s~!(x) is countable for every x € G©,

The Borel full semigroup of a discrete measurable groupoid G is the set [[G]]p of Borel subsets ¢ C G such that the
restrictions s|, and r|y of the source and range maps are injections, and thus Borel isomorphisms onto their respective
images ([13, Theorem 15.2]).

[[G1]p is an inverse monoid with the usual product and inverse of sets, namely

aﬂ:{ab:(a,b)e(ax,B)ﬂG(z)}, a'={aaeca}

and G© is the unit of [[G]]p, which we will instead denote by G(® =1 when no confusion arises.

A probability measure-preserving (pmp) groupoid is a discrete measurable groupoid G with a Borel probability measure ©
on GO satisfying u(s()) = u(r(er)) for all o € [[G]]z. We write (G, i) for a pmp groupoid when we need the measure g
to be explicit. The measure w induces a pseudometric d;, on [[G]]p via

dy(a, B) = pu(s(@Ap)) = ur(@Ap)).

The trace of o € [[G]]p is defined as tr(e) = (. N G@). In fact, the trace and the pseudometric above, along with the
semigroup operation, determine each other: for example, the unit 1 of [[G]]p is the only element of trace 1, and

du(e, B) =tr(@ o) +tr(B71f) —tr(@ a7 B) — tr (B )

and similarly one can write the trace in terms of the pseudometric d,.

The (measured) full semigroup of a pmp groupoid (G, w) is the quotient metric space [[G]] (or [[G]],, to make p explicit)
of [[G]]p under the pseudometric d,. In fact, [[G]] is an inverse semigroup, with the quotient operation endowed from
[[G11B, and the trace map tr: [[G]]pg — R factors through a map on [[G]]. We will not distinguish [[G]]z and [[G]] unless
strictly necessary.

The Borel full group [G] of a discrete measurable groupoid G is the set of those « € [[G]] with s(a) =r(«) = G©, and,
when G is pmp, the image of [G]p in [[G]], denoted [G] or [G]y, is called the (measured) full group of G.

Definition 1.1. A subset A of a pmp groupoid (G, ) is called null if w(s(A)) =0 (equivalently, w(r(A)) =0), and conull if
its complement G \ A is null. A property of the points of G is said to hold a.e. (almost everywhere) if it holds on a conull
subset.

Example 1.2. Let R be a countable Borel equivalence relation on a standard probability space (X, ), and suppose that w
is invariant (see [8]). We can see R as a pmp groupoid as follows: the product is defined by (x, ¥)(y, z) = (X, z). The unit
space of R is the diagonal {(x, x) : x € X}, which we identify with X and endow with the probability measure w. The Borel
full semigroup of R can be identified with the semigroup of partial Borel isomorphisms f:A — B, A, B C X, for which
(f(x),x) € R for all x € A, by associating such f with the inverse of its graph, {(f(x), x) : x € X}. The pmp groupoids that are
isomorphic (in the measure-theoretic sense) to one constructed in this way are called principal groupoids.

Example 1.3. Let Y be a finite set and Y2 the largest equivalence relation on Y, endowed with the usual (discrete) Borel
structure. The only probability measure on Y that makes Y2 pmp is the normalized counting measure: us(A) = |A|/|Y].
We denote the associated metric by dx and call it the normalized Hamming distance.

Note that if Y and Z are finite sets, then the map [[Y2]]3 o > o x (Z2)©@ e [[Y2 x Z2]] is a trace-preserving embed-
ding. The map (y1, ¥2,21,22) — (1,21, Y2, z2) is a measure-preserving isomorphism between the groupoids Y2 x Z2 and
(Y x Z)2, which induces a trace-preserving isomorphism between the respective two full semigroups. Therefore, if Y and Z
are finite sets, there are a finite set W and trace-preserving embeddings from [[Y2]] and [[Z2]] into [[W?3]].

Definition 1.4. A sofic approximation of a pmp groupoid G is a sequence of maps w = {nk ([[G]] — [[Yf]]}, where Y are
finite sets, such that for all «, 8 € [[G]],

(i) limk—>oo tr(my (o)) = tr(a);
(i) limy_, o di (M (0 B), T (@) TR (B)) = 0.

A pmp groupoid G is sofic if it admits a sofic approximation.
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