Algebraic geometry/Topology

Milnor and Tjurina numbers for a hypersurface germ with isolated singularity

Nombres de Milnor et Tjurina pour les germes d'hypersurfaces à singularité isolée

Yongqiang Liu

KU Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven, Belgium

A R T I C L E I N F O

Article history:

Received 17 May 2018
Accepted 6 July 2018
Available online xxxx
Presented by Claire Voisin

Abstract

Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Let μ and τ be the corresponding Milnor and Tjurina numbers. We show that $\frac{\mu}{\tau} \leq n$. As an application, we give a lower bound for the Tjurina number in terms of n and the multiplicity of f at the origin.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow(\mathbf{C}, 0)$ un germe de fonction analytique au voisinage de l'origine avec une seule singularité isolée. Soient μ et τ les nombres de Milnor et Tjurina correspondants. Nous montrons que $\frac{\mu}{\tau} \leq n$. Comme application, nous donnons une minoration du nombre de Tjurina en fonction de n et de la multiplicité de f à l'origine.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main result

Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Set $X=f^{-1}(0)$. Let $S=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ denote the formal power series ring. Set $J_{f}=\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right)$ as the Jacobian ideal. Then the Milnor and Tjurina algebras are defined as

$$
M_{f}=S / J_{f}, \text { and } T_{f}=S /\left(J_{f}, f\right) .
$$

Since X has isolated singularities, M_{f} and T_{f} are finite dimensional \mathbb{C}-vector spaces. The corresponding dimension μ and τ are called the Milnor and Tjurina numbers, respectively. It is clear that $\mu \geq \tau$.

[^0]Consider the following long exact sequence of \mathbb{C}-algebras:

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker}(f) \rightarrow M_{f} \xrightarrow{f} M_{f} \rightarrow T_{f} \rightarrow 0 \tag{1}
\end{equation*}
$$

where the middle map is multiplication by f, and $\operatorname{Ker}(f)$ is the kernel of this map. Then $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker}(f)=\tau$.
Recall a well-known result given by J. Briançon and H. Skoda in [1],

$$
f^{n} \in J_{f}
$$

which shows that $f^{n}=0$ in M_{f}, i.e. $\left(f^{n-1}\right) \subset \operatorname{Ker}(f)$. Here $\left(f^{n-1}\right)$ is the ideal in M_{f} generated by f^{n-1}. The following theorem is a direct application of this result.

Theorem 1.1. Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Then,

$$
\frac{\mu}{\tau} \leq n
$$

Moreover, $\frac{\mu}{\tau}=n$, if and only if, $\operatorname{Ker}(f)=\left(f^{n-1}\right)$.
Proof. Since $f^{n}=0$ in M_{f}, we have the following finite decreasing filtration:

$$
M_{f} \supset(f) \supset\left(f^{2}\right) \supset \cdots \supset\left(f^{n-1}\right) \supset\left(f^{n}\right)=0
$$

where $\left(f^{i}\right)$ is the ideal in M_{f} generated by f^{i}.
Consider the following long exact sequence:

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker}(f) \cap\left(f^{i}\right) \rightarrow\left(f^{i}\right) \xrightarrow{f}\left(f^{i}\right) \rightarrow\left(f^{i}\right) /\left(f^{i+1}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

where the middle map is multiplication by f. Then,

$$
\operatorname{dim}_{\mathbb{C}}\left\{\left(f^{i}\right) /\left(f^{i+1}\right)\right\}=\operatorname{dim}_{\mathbb{C}}\left\{\operatorname{Ker}(f) \cap\left(f^{i}\right)\right\} \leq \operatorname{dim}_{\mathbb{C}} \operatorname{Ker}(f)=\tau
$$

Therefore,

$$
\mu=\operatorname{dim}_{\mathbb{C}} M_{f}=\operatorname{dim}_{\mathbb{C}} T_{f}+\sum_{i=1}^{n-1} \operatorname{dim}_{\mathbb{C}}\left\{\left(f^{i}\right) /\left(f^{i+1}\right)\right\} \leq n \cdot \tau
$$

$\frac{\mu}{\tau}=n$ if and only if, for any $1 \leq i \leq n-1, \operatorname{Ker}(f) \cap\left(f^{i}\right)=\operatorname{Ker}(f)$, i.e. $\operatorname{Ker}(f) \subset\left(f^{i}\right)$. On the other hand, $\left(f^{n-1}\right) \subset \operatorname{Ker}(f)$. Hence, $\operatorname{Ker}(f)=\left(f^{n-1}\right)$.
K. Saito showed ([8]) that $\frac{\mu}{\tau}=1$ holds, if and only if, f is weighted homogeneous, i.e. analytically equivalent to such a polynomial. It leads to the following natural question.

Question 1.2. Is this upper bound of $\frac{\mu}{\tau}$ optimal? When can the optimal upper bound be obtained?
Remark 1.3. Recently, A. Dimca and G.-M. Greuel showed ([3, Theorem 1.1]) that the upper bound $\frac{\mu}{\tau} \leq 2$ can never be achieved for the isolated plane curve singularity case unless f is smooth at the origin. Moreover, they gave ([3, Example 4.1]) a sequence of isolated plane curve singularity with the ratio $\frac{\mu}{\tau}$ strictly increasing towards $4 / 3$. In particular, the singularities can be chosen to be all either irreducible, or consisting of smooth branches with distinct tangents. Based on these computations, they asked ([3, Question 4.2]) whether

$$
\frac{\mu}{\tau}<4 / 3
$$

for any isolated plane curve singularity.
Example 1.4. It is clear that $\frac{\mu}{\tau}>n-1$ implies that $f^{n-1} \notin J_{f}$.
Consider the function germ:

$$
f=\left(x_{1} \cdots x_{n}\right)^{2}+x_{1}^{2 n+2}+\cdots+x_{n}^{2 n+2}
$$

https://daneshyari.com/en/article/8966152

Download Persian Version:

https://daneshyari.com/article/8966152

Daneshyari.com

[^0]: E-mail address: liuyq1117@gmail.com.
 https://doi.org/10.1016/j.crma.2018.07.004
 1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

