

FEMS Microbiology Letters 253 (2005) 221-229

www.fems-microbiology.org

Identification of σ^{V} -dependent genes of *Bacillus subtilis*

Stephan Zellmeier¹, Claudia Hofmann¹, Sylvia Thomas, Thomas Wiegert, Wolfgang Schumann^{*}

Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany

Received 21 July 2005; received in revised form 8 September 2005; accepted 26 September 2005

First published online 24 October 2005

Edited by A. Klier

Abstract

The chromosome of *Bacillus subtilis* codes for seven extracytoplasmic function sigma factors the activity of which is modulated normally by a cognate anti-sigma factor. While inducing factors and genes for four of them (σ^M , σ^W , σ^X , and σ^Y) have been identified, those of the remaining three sigma factors including σ^V remain elusive. The objective of the present study was the unequivocal identification of its anti-sigma factor and of genes controlled by σ^V . In many cases reported so far the gene coding for the anti-sigma factor is located immediately downstream of the gene coding for the sigma factor, and both form a bicistronic operon. We could show by two different experimental approaches that this is also the case for *sigV* and *rsiV*. Under conditions of overproduction of σ^V , 13 genes could be identified being induced several-fold by the DNA macroarray technique. Induction of three of them was confirmed by Northern blots, and the potential promoter of *sigV* was identified by primer extension. This led to the deduction of a consensus sequence recognized by σ^V .

© 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: ECF sigma factor; DNA macroarray; Anti-sigma factor

1. Introduction

All bacterial cells are equipped with genetic programs allowing adaptation to a variety of environmental stresses (see book edited by Storz and Hengge-Aronis [1]). These programs result in the transient expression of a subset of genes to cope with the stressful situation. One possibility to express these stress genes is to replace the housekeeping sigma factor by an alternative one. The Gram-positive soil bacterium *Bacillus subtilis* codes for a total of 16 alternative sigma factors participating in the sporulation process (σ^{H} , σ^{E} , σ^{F} , σ^{G} , and σ^{K}) [2], in

¹ Both authors contributed equally to this work.

chemotaxis, motility, and production of autolysins (σ^{D}), amino acid catabolism (σ^{L}), one coding for an unknown function (σ^{ykoZ}) and in the general stress response (σ^B) [3]. Ten years ago a subfamily of sigma factors involved in responses to environmental challenges, the so-called extracytoplasmic function (ECF) subfamily [4,5], was defined from sequence comparisons [6]. Completion of the B. subtilis genome uncovered seven hitherto unknown alternative sigma factors belonging to the ECF subfamily [7]. ECF sigma factors share common features such as being cotranscribed with and modulated by an anti-sigma factor. In most cases, this antisigma factor is an integral membrane protein with one transmembrane helix where the C-terminal domain is exposed on the outside of the cytoplasmic membrane and supposed to be involved in stress sensing and the N-terminal domain is present in the cytoplasm

0378-1097/\$22.00 © 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.femsle.2005.09.056

^{*} Corresponding author. Tel.: +49 921 552 708; fax: +49 921 552 710.

E-mail address: wschumann@uni-bayreuth.de (W. Schumann).

sequestering the cognate sigma factor thereby preventing its interaction with the RNA polymerase core enzyme. Upon sensing a signal generated on the outside of the cytoplasmic membrane by the C-terminal domain, the sigma factor is released and now capable to interact with the RNA polymerase core enzyme. This in turn leads to transcription initiation of the appropriate genes [5,8]. Another common feature is that the promoter of the operon encoding the ECF sigma factor and its anti-sigma factor is often recognized by its own sigma factor resulting in autoregulation.

From the seven identified ECF sigma factors in *B.* subtilis (σ^M , σ^V , σ^W , σ^X , σ^Y , σ^{YlaC} , and σ^Z) most studies concentrated on σ^M , σ^W , σ^X , and σ^Y . σ^M has been reported to play an essential role for growth and survival in response to high concentrations of salt, cell wall antibiotics, heat, ethanol, acid stress and paraquat [9– 12]. Genes controlled by σ^W can be induced by alkaline shock, by high concentrations of sodium chloride, by phage infection and certain antibiotics such as vancomycin [10,13,14]. σ^X controls cell envelope modification processes [15] and is involved in detoxification, production of and resistance to antimicrobial compounds [16– 18]. Nitrogen starvation was reported to induce the σ^Y operon [19].

Our present study focused on another ECF sigma factor, σ^{V} . The gene sigV (coding for σ^{V}) together with its downstream gene yrhM (renamed rsiV, see below) is induced during outgrowth of *B. subtilis* endospores, but a sigV knockout did not impair outgrowth [20]. Using an IPTG-inducible sigV gene, 98 *B. subtilis* genes exhibited increased expression [21]. Furthermore, it could be

shown, using the yeast two-hybrid system that σ^{V} interacts with the N-terminal domain of RsiV, the presumed anti-sigma factor [22].

2. Materials and methods

2.1. Strains, plasmids, and culture conditions

The strains and plasmids used in this work are listed in Table 1. Strains were routinely grown in Luria broth (LB) at 37 °C with vigorous shaking. Antibiotics were added when appropriate ($100 \ \mu g \ ml^{-1}$ ampicillin, $1 \ \mu g \ ml^{-1}$ erythromycin, $10 \ \mu g \ ml^{-1}$ chloramphenicol, $10 \ \mu g \ ml^{-1}$ tetracycline, or $10 \ \mu g \ ml^{-1}$ neomycin). *E. coli* strain DH10B was used as a recipient for cloning experiments.

2.2. DNA manipulation and PCR

DNA manipulation was performed according to standard procedures [23]. For PCR reactions, high-fidelity Deep Vent^R DNA polymerase (New England Biolabs) was used.

2.3. Construction of strains

Plasmid pMUTIN-FLAG [24] was used to fuse the FLAG epitope tag in-frame to the 3' end of the sigV gene and, at the same time, to put the downstream gene rsiV under the control of an IPTG-inducible promoter (Fig. 1A). To accomplish this goal, about 350 bp of

Table 1

Bacterial strains	and	plasmids	used	in	this	study
-------------------	-----	----------	------	----	------	-------

Strain or plasmid	Relevant characteristics	Sources or references	
E. coli			
DH10B	mcrA Δ (mrr hsdRMS mcrBC) 80d lacZM15 Δ lacX74 deoR	Bethesda Research	
	$recA1$ araD139 $\Delta(ara \ leu)$ 7697 galU galK rpsL endA1 nupG	Laboratories, Inc.	
B. subtilis			
1012	leuA8 metB5 trpC2 hsrM1	[31]	
CH01	1012 sigV-FLAG P _{spac} -rsiV	This work	
CH05	1012 $amyE::P_{sigV}$ -lacZ	This work	
CH07	1012 sigV- FLAG P _{spac} -rsiV amyE::P _{sigV} -lacZ	This work	
ST01	1012 pX2 <i>sigV</i>	This work	
ST03	ST01 with <i>rsiV</i> replaced by a spectinomycin resistance gene	This work	
ST04	ST03 amyE::P _{sigV} -lacZ	This work	
ST06	ST03 amyE::P _{yuaF} -lacZ	This work	
ST09	ST01 $amyE::P_{sigV}-lacZ$	This work	
Plasmids			
pLacZ	bgaB in pBgaB replaced by $lacZ$	[32]	
pX2	Plasmid for xylose regulatable expression of target genes	[25]	
pX2sigV	Plasmid for xylose regulatable expression of the $sigV$ operon	This work	
pBR322	standard cloning vector	[33]	
pBR∆ <i>rsiVspc</i>	Plasmid for <i>rsiV</i> deletion	This work	
pSigV-lacZ	Plasmid with transcriptional fusion of the $sigV$ promoter and $lacZ$	This work	
pMutin-FLAG	Plasmid for epitope tagging	[24]	
pSigV–FLAG	FLAG epitope fused to $sigV$	This work	

Download English Version:

https://daneshyari.com/en/article/9121239

Download Persian Version:

https://daneshyari.com/article/9121239

Daneshyari.com